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Abstract
Considered is the scattering and absorption of an E-polarized two-dimensional (2D) beam
generated by a complex-source-point (CSP) feed in the presence of a lossy grounded dielectric
slab with a lossless superstrate. The solution is found analytically in the Fourier-transform
domain. Numerical results demonstrate the ways of obtaining enhanced absorption in the slab by
a proper selection of the slab electrical thickness and the parameters of the superstrate. The
effects of internal resonances in the slab are analyzed and discussed.

Keywords: absorption, complex source point (CSP) beam, Fourier integrals, scattering, slab
structure
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1. Introduction

A large number of microwave and optical-wave applications
depend on the efficiency of the absorption of the power
radiated by an aperture source (such as small horn) in a flat
layer of lossy material. Among them are hyperthermia,
microwave drying, and solar-cell absorbers to mention only a
few. Regarding these applications, one must typically choose
the optimal parameters of the layer, the working wavelength,
and the source placement. Preliminary analytical and
numerical simulation of the corresponding wave scattering
and absorption problem can lead to more efficient and cheaper
technologies. Earlier works in this area have considered
plane-wave illumination of a dielectric layer [1–6], which

fails to take into account the finite size of illuminated spots in
a real situation.

In contrast, our paper is aimed at considering a directive
source placed at a finite distance from the lossy layer; this
consideration corresponds more closely to an actual experi-
mental situation. As our source, we use a complex-source-
point (CSP) beam proposed in the early 1970s [7, 8] as a
simplified model of a horn-like emitter radiating a unidirec-
tional beam with controlled directivity. Note that in the
1980s–1990s the CSP beams were used by L. Felsen and E.
Jull with co-authors, in combination with high-frequency
asymptotic techniques [9–12], and in the 1990s by other
authors together with numerical methods [13–15]. In these
works the CSP beam plays the role of directive incident field,
which is an exact solution of the Helmholtz equation and
satisfies the radiation condition at infinity, unlike the more
conventional Gaussian beam field. More recently CSP beams
have also been studied as a preferable expansion basis in the
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wave scattering problems [16, 17] dealing with large-size
reflectors and lenses.

In section 2, we present the formulation of the problem
and its solution in the Fourier-transform domain. Section 3
deals with the radiation and absorption characteristics. In
section 4, numerical results are presented and resonance
effects are discussed. The conclusions are summarized in
section 5.

An exp(iωt) time dependence is assumed and suppressed
throughout, where ω is the angular frequency.

2. Mathematical modeling

2.1. Scattering geometry and primary field

Consider the two-dimensional (2D) configuration of figure 1,
which is comprised of a perfect electric conducting (PEC)
ground-plane and a lossy slab (region #1) of thickness w1 and
relative complex dielectric permittivity εr1 covered by a
lossless superstrate slab layer (region #2) of thickness w2,
relative real dielectric permittivity εr2 and magnetic perme-
ability μr2. The free half-space (vacuum region #0) above the
superstrate is characterized by permittivity ε0 and perme-
ability μ0. The entire structure is assumed uniform along the
z-axis.

The above-described configuration is illuminated by a
CSP beam generated by a primary electric current source with
normalized current density

δ δ= − −−( )x y i k Z x x y yJ ẑ( , ) ( ) ( ) , (1)CS CS
pr

0 0
1

where δ denotes the delta function, ω=k c/0 is the free-space

wavenumber (with c for the light velocity), μ ε=Z /0 0 0 is
the free-space impedance, and xcs and ycs are the complex

coordinates of the source point given as

β β
= = + =
= − −

x y i x y

b b

r r b r

b

( , ) , ( , ),

( cos , sin ). (2)
CS CS CS 0 0 0 0

The real coordinates of the source are given by the vector
r0, and we may consider, without loss of generality, that (x0,
y0) = (0, 0). The imaginary coordinates are given by the vector
b, and hence by the real parameters b and β, which are,
respectively, associated with the aperture width and the
orientation angle of a horn antenna simulated by a CSP
[10–15]. The distance between the center (0,0) of the CSP and
the upper boundary of the slab is denoted by L.

The z-component of the primary electric field radiated by
the current source (1) is given by the Hankel function,

= − −( )E
i

H kr r r r( , )
4

. (3)CS CS
pr

0
(2)

0

Note that if ≠b 0 then (3) has two singular points at
β β± ∓x b y b( sin , cos )0 0 . This function is an exact solution

of the Helmholtz equation with respect to the observation
point r,

δΔ + = − −( )k E r r r r( ; ) ( ), (4)CS CSr 0
2 pr

satisfying the Sommerfeld condition of radiation in 2D space.
Moreover, it has a variable beam width controlled by the
parameter k0b as certified by the appearance of the expo-
nential factor in the CSP far-field pattern [7–15],

π
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+

( )E
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e S r

S i e
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( ) ( /4) , 0 2 , (5)
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k b

pr

0
4

pr

pr cos( )

0

0

where the polar coordinates are = +r x y2 2 , φ = y xtan / .

2.2. Formulation of the scattering problem

In the presence of a slab, the total field is a sum of the CSP
field (3) and the secondary field E r( )sec . The latter function
must satisfy the homogeneous Helmholtz equation with the
wavenumbers k0 and εk r0 1,2 in the free half-space, slab and
superstrate, respectively, and, together with its normal deri-
vative, the continuity conditions at the material interfaces. For
uniqueness, it must also obey a certain radiation condition.
Generally speaking, in view of the infinite boundaries this
condition has to be modified with respect to the free-space
radiation condition because of possible presence of the guided
waves [18]. However, as shown in [18], non-attenuating
guided waves do not exist in the presence of losses in the slab
or in the superstrate. Therefore, for a lossy slab we require
that →E r( ) 0sec if → ∞x and − < < +L w y L w2 1 and
impose Sommerfeld radiation condition at < −y L w2,

π
φ

π φ π

∼ → ∞

⩽ ⩽

π− −( )E
k r

e S rr( )
2

( ), ,

2 (6)

i k rsec

0
4

sec0

Figure 1. Cross-sectional geometry of the 2D structure under
investigation composed of a planar dielectric slab lying between a
PEC plane and a superstrate. The structure is excited externally by a
CSP beam. The curvy line denotes the branch cut in real space,
associated with CSP.
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2.3. Solution in the Fourier transform domain

In order to analytically solve the scattering problem with
infinite along the x-axis boundaries, we express the primary
field as a Fourier integral,

∫π
λ

β

=

>

λ
−∞

+∞
− − − ∓ −E x y x y g e e d

y b

( , ; , )
1

4
,

cos , (7)

CS CS
i x x g y ypr

0
1 ( ) ( )CS CS0

where λ λ= −g k( ) ( )0
2

0
2 1/2 with either Re{g0(λ)}>0 or Im

{g0(λ)}>0, so that the integrand function ∓ −e g y y( )CS0 satisfies
either the 1D radiation condition at β>y b cos or decays
exponentially, depending on the value of λ.

Note that the inequality β>y b cos provides con-
vergence of the integrals in the two branches of (7), deter-

mined by the factors ∼λ β λ λ β λ∓ − ∓e e e eb k y b ycos cos2
0
2

. This
means that we must choose the source and the slab-superstrate
parameters L and w2 in such a way that β < −b L wcos 2 so
that the CSP branch-cut does not intersect or touch the
superstrate (see figure 1). Such limitations always appear
naturally in the scattering problems associated with CSP
beams (for instance, see [13]).

Now, the secondary field in regions #0, #1 and #2 can be
also expressed as a Fourier integral,

∫π
λ λ

=

× γ
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Here the spectral function γ λ y( , ) under determination satis-
fies the appropriate 1D Helmholtz equation in the domains #0,
#1, and #2 and the radiation or exponential-decay condition in
the domain #0 ( < −y L w2), so that, respectively,
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with λ λ ε= −g k( ) ( )r1
2

0
2

1
1/2 and λ λ ε μ= −g k( ) ( )r r2

2
0
2

2 2
1/2;

the values of these square roots can be chosen arbitrarily as
the field in domains 1 and 2 and are not subject to a radiation
condition.

The unknown spectral coefficients λ =A i( ), 1,...5i are
determined analytically by imposing the boundary conditions
at the boundaries y= L−w2 and y= L and the PEC boundary
condition at y= L+w1. The explicit expressions of these
coefficients are given in the appendix.

3. Far-field characteristics and power considerations

As we are going to estimate the efficiency of absorption of the
CSP beam in the lossy layer, we need a reference value of
power. As such quantity, we first calculate the power radiated
by an isolated CSP in free-space. In view of the total power
flux continuity, this value can be calculated as the electro-
magnetic far-field power exiting the circle of large radius r
=R→∞,

⎡
⎣⎢

⎤
⎦⎥∮= × ⋅

= →∞
( )P dE r H r l

1

2
Re ( ) ( ) * , (10)

Rr

pr pr pr

where * denotes the complex conjugate. On using the far-field
asymptotic expression (5) to calculate the terms in (10), we
obtain, similarly to [11],

∫π φ=
π

φ β− −( )P k Z e d16 ,k bpr
0 0

1

0

2
2 cos( )0

which, by using equation (9.6.16) of [19], reduces to

= −( ) ( )P k Z I k b8 2 , (11)pr
0 0

1
0 0

where I0 is the zero order modified Bessel function. Note that
the power Ppr can also be obtained based on the Complex
Poynting Theorem, i.e. via the integration over a domain S,
which contains the CSP projection to the real space φr( , ),

⎡
⎣⎢

⎤
⎦⎥∫= − ⋅ ( )P dSE r r J r r

1

2
Re ( , ) ( , ) * . (12)

S
CS CS

pr pr pr

The domain S can be shrunk to the branch cut associated
with CSP and finally to two disks centered at the branch cut
endpoints. Then the use of the addition theorem (see equation
(3) of [13]) and the property of the delta-function yield the
same result as (11).

Second, we calculate the total power radiated by the CSP
in the presence of the layered slab. By means of (5), (7), and
(8), the total radiated electric field is expressed, for

β< −y b cos , as

∫
β β β

π
λ λ

= +

=

× +

λ β λ β
−∞

+∞
− − + +

E x y b E x y b E x y b

g e e

A d

( , ; , ) ( , ; , ) ( , ; , )
1

4
[1 ( )] , (13)

z z z

i x ib g y ib

rad pr sec

0
1 ( cos ) ( )( sin )0

where

λ λ λ= λ β− + −A A g e( ) ( ) ( ) . (14)( )g L w ib
1 0

( ) sin0 2

Further, we calculate the magnetic field components from
the Maxwell equations. Then, we use the upper line in (9) for
the computation of the power exiting the semi-circle of radius
R→∞ in region #0. The evaluation of Fourier integrals is
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performed using the stationary phase formula (see e.g. [19]),

∫ λ

λ π φ
π

φ× ∼ −

→ +∞

λ φ λ φ

π

−∞

+∞
− − −

− −

( )

( ) ( )

S e
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R

( )
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2
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R k i
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0
0

4 0

2
0
2

0

which yields

∫
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φ φ

=

× +
π

π
φ β− ( )

P
k Z

e A k d

1

16

1 cos . (16)k b

rad

0 0

2
2 cos( )

0
2

0

Note that if the slab, the superstrate and the ground plane
are absent then no scattering occurs and A = 0. In that case
(16) gives a corresponding part of the power Ppr.

We also need the electromagnetic power absorbed by the
lossy slab. By definition, this power is

∫ ∫ε β=
+

−∞

+∞
P

k

Z
E x y b dx dy

2
Im ( , ; , ) .(17)r

L

L w
secabs 0

0
1

2
1

According to the Poynting Theorem, it can also be found
as the power flux through the upper interface y= L of the slab,

∫ β β=
−∞

+∞
P E x L b H x L b dx

1

2
Re ( , ; , ) ( , ; , )* .(18)z x

abs sec sec

Equation (18) is more attractive than equation (17)
because it involves single integration only. By substituting the
field expressions into (18), changing the orders of integration,
and using the basic property definition of the delta function,
we arrive at

⎡
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We have also checked that on substituting into (18) the
Fourier integral (8) for E x y( , )sec , changing the order of
integration in the space coordinates x and y and in the spectral
parameter λ, and integrating in x and y analytically we obtain
a single integral in λ that is identical with (19).

In order to estimate the effect of the lossless superstrate
(region #2) on the total electromagnetic power absorbed in
region #1, we introduce (in a similar way to [20]; see also

[21]), the following enhancement factor

= ∼
EF P P/ , (21)abs abs

where the powers Pabs and P̃abs correspond, respectively, to
the cases with and without the superstrate. Beneficial influ-
ence of the superstrate layer, leading to an enhanced
absorption (needed, for instance, for development of efficient
solar cells), is demonstrated if >EF 1.

It is also possible to see that EF can be equivalently
understood as the ratio of the power stored in the slab when
the superstrate is present over the same power when it is
absent. This is because according to the Poynting Theorem
these two powers relate as ε ε= −P P/ Im /Rer r

abs stored
1 1.

4. Numerical results and discussions

In computations, we have to integrate the expressions (16)
and (19) numerically. When integrating in λ, it is convenient
to cast the integrand to a dimensionless form after introduc-
tion of the normalized quantities

λ λ λ λ= = − =( )
k

g
k

k
j˜ , ˜ ˜ ˜ ( 0,1,2).j

j

0

2
2

0
2

First of all, as a partial validation of the derived analytical
results and computer code, we present in figure 2 the nor-
malized powers Pabs/Ppr and Prad/Ppr versus the angle β for (a)
k0w1 = 1.5, 2, 2.5 with L= 10w1 and (b) L/w1 = 2, 5 with
k0w1 = 2.36.

From figure 2 we observe that if the CSP is placed far
from a thin slab (L= 10w1 and k0w1 = 1.5) and its beam ‘looks
away’ from the slab (β= 3π/2) then ≈P P/ 1rad pr and

≈P P/ 0abs pr . This is expected because in this situation the
influence of the slab is a minimum and the field radiated by
the CSP is very close to the complex beam in free space.
Moreover, the largest values of Pabs/Ppr are obtained for β= π/
2, corresponding to the normal incidence on the slab. Besides,
Pabs/Ppr (Prad/Ppr) increases (decreases) with larger k0w1 and
smaller L/w1. These facts could be attributed to the different
evanescent components of the electromagnetic field that reach
the slab as the distance L is decreased.

Then we proceed to seek the resonance regimes in the
scattering and absorption. To this end we need the depen-
dences of the powers on the normalized frequency. We have
selected that quantity as the electrical thickness of the slab,
k0w1. Other involved parameters are normalized by w1 in
order to have a fixed geometry but varying frequency. As a
sensing tool to detect resonances of the slab as an open cavity,
the best is the normalized absorbed power Pabs/Ppr because
the radiated power is associated with the far field, not with the
field inside the cavity.

In figure 3, we present the powers Pabs/Ppr and Prad/Ppr

and the enhancement factor EF versus the electric thickness
of the slab k0w1 for εr2 = 1, 2, and 3 with εr1 = 5(1–0.05i),
w2 =w1/10, b=w1/3, β = π/2, and L= 10w1. These plots dis-
play resonances caused by the corresponding complex-valued

4

J. Opt. 16 (2014) 105712 N L Tsitsas et al



poles of the field as a function of frequency. As known, if the
Q-factor of a natural mode is not very small then the location
of the maximum in Pabs is close to the real part of the pole.

The natural-mode frequencies of a single-layer dielectric
slab backed by a PEC plane as a 1D open resonator satisfy the
characteristic equation,

ε ε=( )k wcot 1/ . (22)r r0 1 1

If ε ≫ 1r1 then the roots of (22) have their asymptotic
form as

π ε≈ =−k w m m( /2) , 1, 3,... (23)r0 1
1/2

In our case Re{εr1} is only 5, however there is still quite
good agreement of (23) with the resonance frequencies
of Pabs.

In particular, the first resonance in Pabs in figure 3(a)
appears at k0w1 = 0.76, while the value obtained from (23) is
0.7. We can also observe that for the covered slab case, if
εr2 = 2 and 3, the resonances gradually shift to the left. This
can be explained by the widening of the considered cavity. At

higher frequencies, the superstrate acts as a second cavity and
brings its own natural modes (i.e. complex-valued poles).
Then, the whole layered-slab structure behaves as a coupled
cavity where all modes are hybrid (also known as

Figure 2. Normalized absorbed and radiated powers Pabs/Ppr and
Prad/Ppr as functions of the CSP beam orientation angle β for (a)
k0w1 = 1.5, 2, 2.5 with L= 10w1 and (b) L/w1 = 2, 5 with k0w1 = 2.36
for (in both (a) and (b)) a bare slab (εr2 = μr2 = 1) with εr1 = 5
(1–0.05i), b =w1/3.

Figure 3. Normalized absorbed and radiated powers Pabs/Ppr and
Prad/Ppr and enhancement factor EF as functions of the electric
thickness of the slab k0w1 for different values of the superstrate
permittivity εr2 = 1, 2, and 3 with εr1 = 5(1–0.05i), w2 =w1/10,
μr2 = 1, b =w1/3, β = π/2, and L = 10w1. Note that EF= 1 when εr2 = 1
because at that point the superstrate is absent.
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supermodes). These effects are not visible in figure 3 due to
too-small electrical width of the superstrate ( ε π<k w /2r0 2 2

); they should appear at higher frequencies. Some of the
above remarks may also be justified by means of the impe-
dance matching effect of the superstrate. For example the first
peak at k0w1 = 0.76 can be seen as the first point where the
input impedance seen at the top of the dielectric superstrate
gets closest to a match.

Worth noting is that the peaks in Pabs (i.e. natural-mode
resonances) do not coincide with peaks in EF in frequency.
This means that a thin superstrate with a smaller than the slab
permittivity works only off the resonance that can be attrac-
tive in applications where broadband absorption is needed.

In practical situations, we normally expect that the source
is fixed and releases the same power at a fixed frequency, lost
for the scattering and the absorption. Hence, we want the sum

+P Prad abs to depend weakly on the parameters of the slab
and the superstrate. This requirement is generally achieved for
the curves presented in figure 3: the value +P P P( )/rad abs pr is
close to 1 (however not equal to 1) and varies slightly if, at
least, ⩾k w 20 1 . This is apparently because the CSP is quite
far from the slab, in terms of the wavelength (here, ⩾k L 200

). If, however, <k w 20 1 then the frequency scan of the

radiated power, Prad, shows many ripples (figure 3(b)), which
are insensitive to the presence of the superstrate. The scan of
Pabs remains smooth and has no ripples. Close inspection
shows that the ripples are explained by the interference, in the
far zone, of the primary CSP-beam field and the field of its
image in the PEC ground plane covered with a dielectric slab.
Indeed, if + →k L w( ) 00 1 then the power Prad diverges
because the Maxwell equations do not allow putting the
electric source on the PEC plane, and this divergence is
oscillatory.

Now, we will suppose that the slab, the source and the
frequency are fixed, and the product k0w1 is tuned to the first
resonance of Pabs. Then, only the superstrate parameters w2/
w1 and εr2 remain to be varied in order to look for appro-
priately large EF values. This may need, according to the
conclusions from figure 3, detuning from the original fre-
quency to get to the shifted resonance position.

In general, for εr2 >Re{εr1} a larger EF could be
expected because such a cavity with a denser thin superstrate
will be ‘less open’ than a bare-slab cavity, implying that the
Q-factors of the natural modes will get higher. On the other
hand, a superstrate may spoil the coupling of the CSP beam
field with a slab mode because of its larger reflection. Hence,
there are two competing mechanisms and therefore a search
for a larger EF may be not so straightforward.

In figure 4, we depict the powers Pabs/Ppr and Prad/Ppr

and the enhancement factor EF versus the dielectric permit-
tivity εr2 of the slab superstrate for the thickness values
w2 =w1/10, w1/8, and w1/6. The frequency is fixed at
k0w1 = 0.6 which is taken to be on the left of the first reso-
nance of the bare slab structure; the latter is k0w1 = 0.76
according to figure 3(a). We observe that a thin superstrate
that is electrically denser than the slab, e.g. with εr2 from 8 to
14 depending on the ratio w2/w1, can yield EF = 3 but (as

elaborated above) off the resonance peak of Pabs. The com-
puted results have been presented in dimensionless units. A
representative example in explicit dimensional units in the
microwave region can be considered (according to the para-
meters of figure 4) by selecting a particular thickness of the

Figure 4. Normalized absorbed (a) and radiated (b) powers and
enhancement factor (c) as functions of the dielectric permittivity εr2
of the slab superstrate for different values of the superstrate thickness
w2 =w1/10, w1/8, and w1/6 with k0w1 = 0.6 and the other parameters
being the same as in figure 3.
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lossy slab w1 = 3 mm and a free-space frequency of 9.54 GHz
(resulting in electrical thickness k0w1 = 0.6). The thickness of
the lossless superstate is, then, w2 = 0.3, 0.375, or 0.5 mm, the
distance of the CSP from the slab is L = 30 mm, while the
aperture width of the CSP is b= 1 mm.

Up to this point we have considered that μr2 = 1, i.e. that
the superstrate is non-magnetic. Now, we investigate the
effect of a magnetic superstrate with μr2 > 1 and εr2 = 1. We
suppose that the electrical width k0w1 is tuned to the first
resonance k0w1 = 0.76 of Pabs of the bare slab; here we do not
detune to a shifted resonance position. In figure 5, we show
the powers Pabs/Ppr and Prad/Ppr and the enhancement factor
EF versus the magnetic permeability μr2 of the slab super-
strate for the same superstrate’s thickness values considered
in figure 4. We observe that a thin superstrate achieves
increasing values of Pabs and EF and decreasing values of Prad

with increasing μr2 on the resonance peak of Pabs of the bare
slab. This shows that the permeability of the superstrate
constitutes an additional control mechanism offering
enhanced absorption and, importantly, without detuning from
the original resonance frequency (as was the case in the
variations with respect to εr2 depicted in figure 4). The
increase in Pabs can be attributed to the fact that by increasing
μr2 we are making the cavity less leaky through the upper
boundary (the superstrate’s refractive index and hence the
contrast with respect to the bordering media are increased).

Furthermore, we have also computed frequency depen-
dences (not included here) of the powers and the EF for the
other values of the normalized aperture width b/w1 and the
orientation angle β of the CSP. The qualitative behavior of the
respective quantities is similar to that depicted in figures 3 and
4, as long as the incident beam ‘sees’ the slab.

Regarding the distance L of the CSP from the slab, we
note that if L = 10w1, or larger, then the whole configuration
serves as a model for horn antennas used for heating, drying,
or pumping a lossy slab. If one has in mind other types of
applications then smaller values of k0L are also of interest. We
have also performed simulations with smaller values of k0L
and found that the conclusions derived above concerning the
variations of the powers still remain valid.

Next, we examine the variations of the absorbed and
radiated powers in a high-frequency (HF) regime. Figure 6
depicts the normalized powers Pabs/Ppr and Prad/Ppr versus the
electric thickness of the slab k0w1 for superstrate permittivity
values εr2 = 1, 2, 3 with εr1 = 5(1–0.05i), w2 =w1/10, b=w1/3,
β= π/2, and L= 1.3w1. It is evident that there exist wide
regions of the normalized frequency k0w1 where Pabs/Ppr is
very close to 1 and simultaneously Prad/Ppr is very close to 0.

We examine this effect further and also test it with
respect to the variations of the superstrate relative permittivity
εr2 by depicting in the panels of figure 7 the reliefs of P

abs/Ppr,
Prad/Ppr, 10log10(P

rad
with/P

rad
without) and EF versus both k0w1

and εr2. By ‘with’ and ‘without’ we mean that the structure is
considered with and without the superstrate, respectively.

The region of k0w1 from 27 to 37 and εr2 from 1.8 to 2.8
is characterized by large absorption, where Pabs/Ppr is very
close to 1. This yields EF > 1 with a maximum value of
EF= 1.2. Importantly, in the same region the radiated power

Figure 5. Normalized absorbed (a) and radiated (b) powers and
enhancement factor (c) as functions of the magnetic permeability μr2
of the slab superstrate for different values of the superstrate thickness
with εr2 = 1 and the other parameters being the same as in figure 4.
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is decreased significantly with Prad/Ppr being close to 0. This
is emphasized by the variations of 10log10(P

rad
with/P

rad
without)

showing a 20 dB reduction in the radiated power for (k0w1,
εr2) = (32, 2.2) compared to the no-superstrate case.

The above results can be considered as elementary
optimization. More systematic optimization treatment can
potentially provide even better results concerning combina-
tions of parameters, which provide large absorption and
reduced radiation.

5. Conclusions

We have considered the radiation and absorption of the
directive CSP beam field in the presence of a lossy dielectric
slab backed with a PEC plane. It has been shown that the
radiated (absorbed) power has minima (maxima) associated
with the excitation of the slab natural modes.

By covering the slab with a thin lossless superstrate one
can enhance the power absorbed in the slab, although not at
all frequencies. Larger enhancement can be achieved with
electrically dense superstrates. To this end, the frequency and

other parameters such as the superstrate thickness and its
permittivity should be selected properly. This can be done by
using the methodology and the equations presented in the
paper.

Appendix

The coefficients appearing in the secondary fields expressions
(7) and (8) are given by
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In (A.1)–(A.5) are utilized the following auxiliary func-
tions
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Figure 6. Normalized absorbed and radiated powers Pabs/Ppr and
Prad/Ppr as functions of the electric thickness of the slab k0w1 for
different values of the superstrate’s permittivity εr2 = 1, 2, and 3 with
εr1 = 5(1–0.05i), w2 =w1/10, μr2 = 1, b =w1/3, β= π/2, and L= 1.3w1.
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