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Abstract—An efficient and accurate algorithm based on the crucial for full exploitation of their potential, and yet, to date,

combination of the Green’s function method and an analytical there is a lack of computationally efficient analysis techniques
regularization technique is applied to study the complex natural reported in the literature for this problem

frequencies and Q factors of two-dimensional (2-D) dielectric . . . .
resonators (DRs) in a layered environment. Frequency shift and | N€ objective of this paper is to present such a technique that

degeneracy splitting of the whispering-gallery modes (WGMs) is not only highly accurate and very fast but also offers flexi-
of circular-cylindrical and tubular DRs immersed into layered  bility and robustness, essential ingredients for practical design

dielectric media are computed and analyzed. software. Before describing the present approach, a brief review
Index Terms—Analytical regularization, dielectric resonators Will be made of the existing techniques that have yielded some
(DRs), Green’s functions, optical waveguide components. insight into the performance of such in situ DRs.

Some attempts have been made to study the complex frequen-
cies of DRs in a shielded microwave integrated circuit (MIC)
. ] . environment and to estimate the degradatio ddctors due to
L OW-LOSS dielectric resonators (DRs) operating on thgnductor loss. For example, a perturbation method was pro-
whispering-gallery modes (WGMs) have been studied boflyseq in [12] for indirect determination of conductOrfac-
theoretically and experimentally for a number of years. Thei§,s of DRs by computing the relative difference between the
various advantages, such as hi@fiactors, simplicity of fabri- perturbed and unperturbed resonant frequencies. However, it is
cation, mechanical stability, good temperature compensatiogguired that these are evaluated beforehand using a rigorous
and suppression of spurious modes promote their widespr hod. In [13], the conducta® factor of a DR was deter-
use in various optical, microwave and millimeter-wave circuitgpined by computing the stored energy and energy loss by the ef-
Furthermore, they have proven to be essential components forffigjve dielectric constant method. Moreover, an accurate tech-
design of novel optical devices, such as microlasers [1], Blghnique based on a new definition of effective dielectric constants
wavelength selective filters, wavelength division multiplexers, the dielectric waveguide model was used in [14] to obtain the
(WDMs) [2], polarization rotators [3], and can be useful for theagonant frequencies of DRs in MIC environment. The mode-
study of nonlinear optical effects [4]. matching technique was applied in [15] to calculate the resonant
Knowledge of the natural frequencies and quality factors gbguencies of a ring DR on a dielectric substrate and two cou-
isolatedDRs is of interest for some remote sensing and antenﬁ@.d ring DRs inside a perfectly conducting waveguide cavity.
applications. Indeed, a number of approaches to the investigaThe analyses just described are only applicable in the shielded
tion of isolated resonators can be found, such as dielectric Wa¥gse which is common in microwave applications. However, the
guide methods [5], radial and axial mode-matching methods [Gy,dy of DR characteristics in a nonshielded and, furthermore,
[7], the method of moments (MoM) [8], the null-field method, stratified dielectric environment is much more important for
[9], and finite difference time domain (FDTD) methods [10}ine optoelectronic applications. Unfortunately, this is even more
[11]. However, in most practical optoelectronic applicationsjifficult since it requires taking into account the conditions at
DRs are integrated as a part of a complex circuit. In this casgiinity as well as the continuity conditions at all the dielectric
the natural frequencies can differ significantly from that of ajterfaces.
isolated resonator due to field interactions in the coupling re- |, [16], a simple circuit model of a DR coupled to a transmis-
gion. Accurate prediction of the behavior of such in situ DRs i§on Jine was proposed, and some applications of WGM DRs as
bandstop or directional filters and power combiners were dis-
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strate, although the effect of the substrate-guided waves was
neglected. This omission is significant since, in practical situ-
ations, it is vital to consider the excitation of resonators by sur-
face waves propagating along dielectric guides or, as in the case
of add/drop filters, launching surface waves in different guides
by the WGM of a DR. Indeed, as shall be highlighted, the inter-
action between DRs and dielectric waveguides, along with the
radiation losses from the DR, has a dramatic effect on the nat-
ural frequencies and especially ghfactors.

A combination of the volume IE method and Galerkin tech-
nique was also used to analyze DRs in inhomogeneous environ-
ments [18] but is only applicable to resonators with separable
geometries, which is too restrictive in practice. The design of
waveguide-coupled microring resonators has been performed
using FDTD in [19]. However, the computational intensity of
FDTD techniques, as well as the need to use high-quality artifi-
cial absorbers and to avoid meshing-induced staircasing errors,
are well known. Finally, it should also be noted that standard
perturbation techniques can fail to give a correct description of
the high€{) WGM resonances as the inhomogeneity of the host
media causes a drastic shift of the resonant frequencies from
their free-space values.

Having discussed the approaches to the problem of in situ
DRs considered to date, it is clear that there is a need for a more
robust technique, one more suited to modern-day design tasks.
Such a technique has been developed in [20] and [21] and suc-
cessfully applied to study the performance of microwave WGM
filters based on the circular and ring DRs excited by a guided
mode of a grounded dielectric waveguide. However, the anal-
ysis presented in [21] only investigated the scattering problem
and as such was formulated entirely in the real-frequency do-
main. Furthermore, the applications considered in [21] are more
suitable for microwave structures.

This paper presents the analysis of the 2-D source-free gener-;.
alized-eigenvalue problem fora WGM DR in a layered medium.
As known, due to a power leakage, open resonators may have
only complex-valued natural frequencies that necessitate the an- Il. EIGENVALUE PROBLEM FORMULATION
alytic continuation of the characteristic eigenvalue problem to ) _ o
the complex domain. The spectrum of complex-valued frequen-IN many practical optoelectronic applications, DRs are lo-
cies does not depend on the DR excitation; hence, their iderg@ted in the vicinity of flat dielectric |_nterfaces, e.g., semicon-
fication is an important task in the practical design process. ductor substrates or planar waveguides. Thus, we consider a

There are a number of significant issues that must be resonfegular dielectric cylinder (ring DR, for brevity) in a layered-di-
when the approach of [21] is generalized to the eigenvalue préiectric host medium. In particular, we shall consider a pair
lems. These include the accurate computation of the Bessel hdlielectric half-spaces [Fig. 1(a)], grounded dielectric slab
Hankel functions of complex arguments and numerical tredf-'9- 1(P)] and planar asymmetrical dielectric slab [Fig. 1(c)].
ment of certain integrals not arising in the real-frequency case!ese geometries are of interest for optical bandstop filters,
Finally, the problem is reduced to searching for the deternfiouplers and sensors, and their microwave and millimeter-wave
nantal zeros, which can now occur over a wide range of a coRRunterparts. The outer and inner radii of the ring are denoted as
plex plane, rather than the real-axis problem previously Coﬁ__andc,_ re_spectivel;_/. The cylinder separation frpm the_ nearest
sidered. Therefore, a formulation of the open-DR eigenval@éelectric interface isw, so that the DR center is at distance
problem needs special attention, and this is presented in Se& @ + w from the interface. We assume a 2-D problem (i.e.,
tion I1. Section Il deals with the derivation of IEs, while Secihat the fields do not vary along theaxis). Then a total field can
tion IV contains a brief description of how a regularized infiP€ characterized by a single scalar functiorwhich represents
nite-matrix equation is obtained. Section V contains a reviegither theE. or I, component, depending on the polarization.
of the major physical effects of the layered host medium on tikf thg boundaries, the total field must satisfy the Helmholtz
behavior of natural frequencies. Conclusions are summarize€fiHation
Section VI. Throughout the paper, the time-dependence conven-
tion e~“* is adopted and omitted. [A+ k?e(P)] U =0 1)

WGM ring-like DR in stratified media.
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where the permittivitye(7) is, for definiteness, a positive and inside the inner radius of DR, respectively, as the single-
step-wise function of coordinates. Continuity conditions on tHayer surface potentials over the corresponding-domain contour
circular contours.,,, L. and at the flat interfaces between the
flat layers of the host medium are the same as in the scattering U(7) :/zﬁE(H)(Fa)GE(H)(F, F)dle, r>a ©)
problem (see [21]).

As we consider an open-domain problem, the correct con-
dition should be imposed at infinity in the plage, y) for the ~ U™(7) =/<P D (7)) GEH (7, 7, )dl
complex values of. This condition can be established by using La
a technique of [22], i.e., by analyzing the far-zone behavior of
the layered-medium Green'’s function analytically continued to + /“E(H (F)GEI (7, Fo)dle, c<r<a

complexk. The fields can be represented as convolutions with L.

the Green'’s functions (see [23]); therefore, they must have the (4)
same far-zone behavior. In [22], such a radiation condition was ;7 n(7) = /IBE(H E(H)(_, 7\l r< e )
established for the redl-scattering by a localized object in lay- fe)es '

ered medium. It differs from classical Sommerfeld’s condition

by the presence of the guided-wave modes of host medium. Rafidity of representations (3)—(5) for compléxfollows from
ichardt's condition [24] is known to be the compléxeontinu-  the Reichardt condition (see Appendix | and [23]). Hgng)
ation of Sommerfeld’s condition to the sheetdlof k. In sim-  andGP") are theE(H)-type Green’s functions of the homo-
ilar manner, in our problem, the following modified condnmrgeneous medium with permittivity, ande;, respectively, and
should be imposed (see Appendix I): GF(H) is the Green’s function of the layered dielectric medium,

all continued to complex, i.e.,
UM = R+ W@, j=1,23

o GE (7, 7%) =" B (k3 |7 - 7] ©)
( ) ing —

Ras( Z gy (kyErsr) e?, Ro(f) =0 B(H) » ~y _ 0 (1) L

n=—oc Gy ) = Ho o (ke |7 =) @)

QE‘(H) E(H) >0 ) E(H)(» + 0 (1) . .

win -3 { " } V) g et @) GFD(E R = D (k|- )
3 , T < 0o

Here,g, = \/e1 —h2, hy, = hy(k), p = 1,2,... are nor- 4”700 9
malized propagation constants of the natural modes of the host % i91k(y+ya+2b)+ihk(z—za) g,
medium,QF) (depends ork) is a number of these modes, = 5 o
andV,,(g,y) is a mode cross-sectional field (see [21]). Note that g =Vei—h* 1=123, ao"=1 o =e
R3(7) = 0 in the case of Fig. 1(b). Besiddd[(7) = 0 1) in the ®)

case of Fig. 1(a), (2) #, < & inthe case of Fig. 1(b), and (3) if
€2 < max(eq,e3) inFig. 1(c). Coefficients;,, andg, are some

functions ofLn k£ andg,(k), andHff)(-) are the Hankel func-
tions. Equation (1), along with the boundary and far-field condi-
tions, defines a generalized eigenvalue problem. As seen from RE) _ 91792 pu) _ 291 7 €192 ©)
(2), the domain of analytic continuation of the field function g1 + g2’ €201 + €192

in k is not wider than thglgnflnlte -sheet Riemann surfécef
the functionLn %k + E _1 (e1—R2(K)) /2 onits principal

In the integrands of the nonsingular terms of (8), the fol-
lowing factors appear:
1. Two dielectric half-spaces

2. Grounded dielectric slab

sheet,, defined by the conditions /2 < arg k < 3r/2 and pE) _1918(kgad) + g3 cos(kgad)
Im(e; — h2(k))Y2 > 0,p = 1,2,...QF), the generalized ig1 sin(kgad) — ga cos(kgad)
eigenvalues can be located only on e & < 0 half-plane, (#y _ 19162 cos(kgad) — go sin(kgad)
o ) o ) . . R = : (10)
coming in pairs symmetric with respect to the imaginary axis. ig1e2 cos(kgad) 4 g2 sin(kgad)

These facts can be verified by using the complex Poynting . . .
theorem applied to the modal field function (i.e., generalized 3. Asymmetrical dielectric slab. See (11) at the bottom of the

next page.
eigenfunction). Note that, at the real axis{&f, condition (2) , . .
reduces to the radiation condition established in [22]. The Green's functions given by (B) correspond 1o the case

where both the source and observation points are in the upper
half-space, i.e.y > —b, ys > —b, and satisfy the continuity
conditions at the media interfaces. Further, by imposing the

Now, we build a coupled set of IEs for the eigenvalue probleboundary conditions on the resonator contours, a set of four cou-
formulated in Section II. In doing so, we retrace all the stegded homogeneous singular IEs for the unknown density func-
of the scattering-problem IEs derivation (see [21]), but keep fions can be obtained similarly to [21, egs. (14)—(17)]. The aim
mind that now the parametgican be complex-valued. First, weis to determine those complex values of the paramieiethat
present the fields outside the outer radius of DR, inside the rirggnerate nontrivial solutions of these IEs.

Ill. BOUNDARY INTEGRAL EQUATIONS (IES)
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IV. PROCEDURE OFANALYTICAL REGULARIZATION @

The Green’s functiongés;, G., andG in the kernels of ob-
tained IEs are known to have logarithmic singularities’ at:
7s. To handle the singular parts of the kernels of IEs, we use
the integral operator regularization (semi-inversion) [20], [21].
Here, it is based on the analytical inversion of the frequency-
dependent singular parts corresponding to the isolated (in the
free-space) ring DR. We recall that the free-space scattering
from a circularly layered cylinder can be solved in explicit form
leading to infinite series. This is due to the fact that the func-
tions {eimt}fno:_oo form the set of orthogonal eigenfunctions
of the integral operator with the corresponding kernel functions.
Therefore, now we build a Galerkin-type MoM scheme with the
aforementioned exponents as Q'Oba' expansion functions. H?} ’2. Complexh plane and the contour of integration chosen for numerical
we expand the unknown functions as follows (the superscrihiuation of spectral integrals.
E(H) is again omitted):

Surface wave poles

Modified contour

Original integration path

2 & 4
)= Y e 12
P(7a) imm:mm e (12)

guments must be based on the backward-recurrence technique.
However, for the Neumann functions, it must start from cer-

ith simil , in oth fial d ) d hand ttain intermediate index value and continue up and down. The
with simifar expansions in other partial domain, and handi€ g, ,son of the functionﬁf(E) is one of the most time-con-

k_err_lel functions and th_e right-hand side (RHS) functions of I_ ?Jming parts of the whole algorithm, since it needs a numerical
similarly to [21]. On using some algebra and the Orthogonallmtegration. It should be done carefully in view of the integrand

of exponents in the term-by-term integration, we exclude so ction behavior. Using in (15) wavenumbers normalized by

of thet.unl;nO\{[vhns andﬁgr.rlvetgt?e @omocc))geneou:; mf'?'te'_mat%ﬁys a crucial role since it brings the integration contour to the
equation for the coefficient’ = {z,,}~_ _, wherez,, = real h axis (Fig. 2) for anyk.

T (k1a)ml2™ (kya) ™™, ky = ky/21, as follows: Inthe case of the geometries of Fig. 1(a) and (c), there are four

(I + AE(H)) X =0 (13) branch points on the original integration contourhat +,/e1
- andh = +,/e3. If, however,e; = e3 in Fig. 1(c), then there
wherel = {6, 1 __ AU = {Aﬁ%H)} is only one branch point d = +,/z, and this is the case of
’ m,n=-00 Fig. 1(b). Besides, in the cases of Fig. 1(b) and (c), there exists

A2 O a finite numberQ®() of poles ath = +h,, corresponding to
(kra)m=nn! (1 N Z.BTE;‘L(H)) the natural modes of the slab that are guided dhesh; = 0)
if Im & = 0. For these modes, one can verify thahif £ # 0,
QFU) — _ g (2kb) thenTm h, Tm k > 0.
. oo REGD () 41 4 To smooth the integrand and spe(_ed up computati_ons, we
+ — — 7 (h—ig)"e*9*dh. follow the procedure frequently met in the computations of
g - 9 Sommerfeld’s integrals. First, we convert the integrals to the
(15) ones along the positivee h > 0 semi-axis. Then, the path of
integration is deformed to be composed of the four straight-line

AE@D =

(14)

For simplicity, if ¢ = 0 (solid dielectric resonator), then

segments between the points:/1)= 0; 2) h = —iT,; 3)
REGD _ WEWE) L], (ka\/ep), Y (kia)} h =T, —iT,;4)h = Ty;and 5)h = T,.,whereT}, = 1/Re(kb),
" T WEE) {,,(kay/2y), Jm(k1a)} Ty, = /e2+1(Fig. 2). Location of the termination pointdepends
Py ECH) . . , 16 on the rate of the integrand decay on the last segment and can be
{f,9} =a" Ve f'g—Vefy (16)  takenag, = 15/Re(kb). Thus, the branch points are bypassed,

and, if otherwise, the expressions of [21, eq. (28)] are valid. and the contribution of the poles is accounted for automatically,
Here, J,, andY,, are the Bessel and Neumann functions, regrovided that they lie above the deformed contour.

spectively, and the prime is for the derivative with respect to the To determine the complex natural frequencies of the WGMs

argument. As known from [25], a free-from-error accumulatioaf the resonator, we search the values of the normalized fre-

algorithm for computing the Bessel functions with complex aguency parametéra that are characteristic numbers of the ma-

g1+ 92)(g2 — g3) exp(2ikgad) + (91 — 92)(92 + 93)

e _{ ,
(91 — 92)(92 — g3) exp(2ikgad) + (91 + g2)(92 + g3)

g (6201 + €192) (€392 — £203) exp(2ikgad) + (201 — e192) (€392 + £293) (11)
(€291 — €192) (€392 — €293) exp(2ikgad) + (€291 + €192) (€392 + €293)
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trix operatorA®(#)(ka), i.e., the points at which the determi-
nant of the matrix equation vanishes, as follows:

det (1 + AE(H)(ka)) - 0. 17)

The Fredholm second-kind nature of (13), as well as the an-
alyticity of operatorsAZ(1) in k on €, follows from the fol-
lowing estimation]A,,,| < const (a/2b)"™. Here,|m| and
|n| are large numbers (for details, see Appendix I). Then, the
Fredholm-type theorems for operators depending on parameter
[26] guarantee that the characteristic numbers of (17), i.e., the
eigenvalues, form a countable set of isolated point§.oBue
to all this, after the matrix truncation, (17) can be solved numer-
ically, with a guaranteed convergence to the exact values of the
characteristic numbers of infinite matrix. Convergence is under-
stood here as the possibility of having computation error pro-
gressively minimized to machine precision, by taking the trun-
cation numberNV greater. The proof is based on the results of
[27]. The ,rOOtS of (17) are f‘?“”d by searching in the Compl%g. 3. Fields patterns of (& GHZ, and (b)lW GH,. Both are resonances
domain with the Powell hybrid method [29]. Here, accuracy @ the DR located over the grounded dielectric slab waveguide with parameters
computing (a) matrix elements, (b) determinant as a functidfe = 1., = 10 + 0.001;, ande> = 4.8.
of N, and (c) roots of (17) should be keptas < ¢, < e,

respectively. Once the complex natural frequency has been gigs |ayered environment. Instead, one obtains two independent
termined, its) factor can be obtained as follows: families of natural modes having the fields expandable in terms

Re(ka) of cos(n(p — m/2)) orsin(n(¢ — 7/2)), respectively, that is,
Q=- 2Im (ka)’ (18) s_ymmetric or asyr_nmet_ric with respect to tg]axis. In our nota-
. . ] . ) tion, the superscript will correspond to this sort of symmetry.
Thus, althoughin practice the matrix used in (17) is truncated, rje |4 patterns of these natural modes are presented in Fig. 3(a)
the analytical regularization procedure reduces the impact 9y () for the modes with one and two radial field variations,
this, and the method shows guaranteed and fast convergefgectively. For brevity, we shall refer to the real part of a

with increasing truncation number. natural frequency as a resonance frequency. Notekhat
Re(ka)(1 — i/2Q).

Fig. 4(a)—(f) show the resonance frequencies @nfactors
WGMs in an isolated DR can be classified, according to [df the solid circular DR modes as functions of the width of the
and [16], asW GEZ | or WGHZ , depending on the polar- separation gap (assumed air) for three cases of host media and

ization. By tradition, the notatioW’ G E(H)% ,, corresponds to for modes with one [Fig. 4(a), (c), and (e)] and two [Fig. 5(b),
the case of the transverse electric (magnetic) field being ességd); and (f)] radial variations. It can be seen that the field inter-
tially tangential to the DR cross section. This implies that th&ctions between the slab and WGM DR do not cause significant
field component parallel to the DR axis is of opposite naturdgviation of actual resonance frequency from that of isolated
so thatW GE(H) modes correspond to tHé( E) polarization. DR. However() factors may fall down drastically if separation

In a circular-cylindrical DR, WGMs can be further charactergets smaller. Therefore, the coupling gap effects on the perfor-
ized by two modal indexes: andn. The first indexm denotes mance of the WGM DRs have to be taken into account, espe-
the number of azimuthal variations of the mode field and coigially when a small gap is introduced. Larger gaps result in less
cides with the order of the Bessel function that determines therturbations of the WGM fields and, hence, less change in the
field behavior. The second indexdenotes the number of vari- natural frequencies. Furthermore, it is evident that modes with
ations along the radius of DR. In an isolated DR, WGMs amne radial field variation are much more sensitive to the pres-
double-degenerate due to the circular symmetry, which corgnice of dielectric interfaces.

V. NUMERICAL RESULTS AND DISCUSSION

sponds to equivalency in thes(ny) or sin(nyp) field depen-  Increasing the waveguide thickness affects the DR complex
dence on the azimuth coordinate. These two possible rotatimgfural frequencies, as shown in Fig. 5(a)—(c). Fig. 5(a) presents
senses are denoted by supersctipt propagation constants of the grounded lossless dielectric-slab

When a DR is integrated into an optical circuit, the couplingzaveguide surface modes versus its normalized thickiass
often occurs across a gap between the DR and a waveguide [2§;an be seen that as the valued)fz increases, new surface
[19]. The width of this gap determines the coupling degree berodes appear and resonance frequencies [Fig. 5(b)Paiad-
tween the waveguide and resonator. The coupling may also végis [Fig. 5(c)] of the DR also experience oscillations. Crosses
if the width of the slab waveguide changes, hence contributiog the graphs show the points at which new surface modes ap-
to variation of the radiation losses of DR. It should be notgokar. Besides, decreasing the thickness of a dielectric layer to
that double-degenerate resonant frequencies of an isolated Z&o, we can consider a DR located over a perfect electric con-
split when the axial symmetry of the problem is disturbed bguctor (PEC) plane. It can be seen that the presence of the PEC
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. ) ) . o Fig. 5. Normalized propagation constants of the (a) grounded dielectric-slab
Fig. 4. Shift of the WGM resonance frequencies of a circular-cylindrical DRjgenmodes, (b) WGM natural frequencies, andiddactors of DR versus the
(es = 10 + 0.001:) in the free half-spacés; = 1) due to the presence of gjap thicknesso/a = 0.01,e, = 10 4 0.0014, e = 4.8.
(a), (b) dielectric-dielectric interface{ = 9); (c), (d) grounded dielectric-slab
waveguide {/a = 1, s, = 4.8); (e), (f) assymetrical dielectric waveguide
(d/a = 1,60 = 6,23 = 4).

plane has a strong influence @G}, ,, modes and almost does
not affectW G, |, modes of the DR.

Fig. 6(a) and (b) shows the resonance frequencieaiad-
tors of a DR for the case of the geometry of Fig. 1(a) as func-
tions of the lower half-space permittivity. Since the dielectric
interface does not support any surface waves, no oscillation is
visible, and it is seen that th@ factors of resonances are the Y 20 40 60 g,
most affected if the values of dielectric constants of the lower b) 10
half-spacee;) and DR(e;,) coincide. This is because here both
the separation and contrast between DR and lower half-space is
small, and the DR modal field leaks out with minimum reflec-
tion. Ring DRs are often used to provide a wider range free of Q
parasitic modes. Since WGMs are characterized by a strong en-
ergy confinement within a small region between the outer rim
and inner caustic, removing dielectric material from the central
part of a DR does not affect the WGM field unless the inner ra- "0 a0 e
dius of DR gets smaller than the radius of the caustic.

Fig. 7 shows the shifts in resonance frequencies and degrg:- 6. (a) WGM resonance frequencies and (b¥actors of DR over the
dation of ) factors due to the change of parameﬂ;éaz. One dielectric boundary versus the permittivity of the lower half-spacge =
can see that increasing the inner radius of the DR destroys regBll e = 10 +0.0010. = 1.
nances with several radial variations, while high-esonances
having one radial variation can still survive in very thin ringscipal-family modes can be achieved at certain values/af
Here, there is a phenomenon that cannot be predicted by anywpere a coincidence of the real parts of natural frequencies with
proximate technique. An increase of tefactors of the prin- those of the modes having two radial field variations occurs.

L nnd
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been demonstrated. Thus, the method of [21] has been modified

2 327 WGH, | to the study of eigenvalue problems that are important in opto-
e eessssesssopnmrTTTTTS electronic applications. Together with recent progress in devel-
WGH;, oping a generalized method of analytical regularization (MAR)

algorithm applicable to the study of 2-D DRs of arbitrary cross
2.84WGH, : : ) :

- section [30], this forms a universal framework for accurate sim-

% __/1&‘"’/ ulation of a wide class of DRs.

= WGH,,

2.4{ WGH, e APPENDIX |
Ifa2-D DR is placed irfree spacend excited by a known lo-
WGH, , , calized source with a harmonic time dependerncé“!, Im k =

T T T

0.2 0.4 0.6 ck 0, then the adequate condition imposed on the total-field func-
tion U (k, ) atr — oo is the Sommerfeld condition [23], [28].
The Green’s function of the Helmholtz equation matched to this

600 .
b) condition is
Go(k,7,7) = ~HSV (k|7 — 7). (A1)
400+ Y 4
Q The matching is understood in the sense that the following prop-
erty holds:
200 +
. 8G0(k/ 7?7 Fl)
A 7{ [U“fﬂT
0 L
L Uk, )
60 —Go(k, 7,7 )T dl=0 (A2)
<)
50 whereL is an arbitrary closed curve with outer unit nornial
andU satisfies the Sommerfeld condition as well. Therefore,
40 one can use Green'’s function for building the scattering-theory
contour IEs, whose kernels aféy and its normal derivative
Q 30- [23], [28]. Furthermore, one can verify that no rdatan be
an eigenvalue of the scattering problem. It is evident that the
20+ domain of analytic continuation @ (k) in & is the Riemann
surfaceA of the functionLn k. This is an infinite-sheet surface
IOAWGH ’ WeH' with the branch point @ = 0. Hence, the domain of analyticity
32 32 of U(k,#) cannot be wider tharh. The principal sheed is
ofz 014 016 c/a selected by making a branch cut along the negdtiexis as

follows: Ag = {—7/2 < argk < 37 /2}.
Fig. 7. Resonance frequencies apdactors of WGMs of a ring DR located  Reichardt has shown [24] that for the complex valueg of
over a grounded dielectric slab versus the inner radius of the resoadtoe= ; it ; ; ;
0.01,da =1,y = 10+ 00014, 25 = 4.5. In (a). the solid lines are for the the following c?ndltlon _plays the role of analytic continuation
(++) oscillations, and the circles are for the ) ones. of Sommerfeld’s condition: at — oo (actually, for allr > C),

the solution is expandable as a uniformly convergent series

VI. CONCLUSION o0 '
Uk, )= Y anH (kr)e™?. (A3)

n=—oo

A full-wave IE approach has been applied to the analysis of
the natural frequencies of the WGM DRs in a layered environ-
ment. Based on this, an efficient numerical technique has béegms condition ensures that even for complexthe property
developed, and complex frequencies of the WGMs of ring DRA2) holds true. Therefore, the Fredholm second-kind IEs
in several types of layered dielectric media have been calculatedown in the realk scattering analyzes [23], [28] are valid
Due to the analytical regularization, our solutions possess ufof all complex values of as well. This enables one to use
form numerical convergence, and no spurious eigenvalues #pe theory of operator-valued functions to study the properties
pear. It has been shown that the frequency degeneration of tfié/ (&, 7). Here, the operator generalization of the Fredholm
WGNMs of an isolated DR is removed if the DR is immersed inttheory made by Steinberg [26] leads to the conclusion that
a stratified medium. U(k,7) is no more than a finite-meromorphic function bf

Furthermore, a different dependence of the WGMs with omarying on A, i.e., it may have only a countable number of
and two radial variations on the arrangement of host medium Haste-multiplicity poles with the single accumulation point at
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infinity. Another immediate corollary is that the residues in the Ra(g) = 219 ' (A9)
simple poles are 77 igsin(kgad) — g2 cos(kgad)
The first term in the RHS of (A6) is the same as in the free
Res U(k,7) = CyU,(ks, Ad - .
k:ii (k. 7) sUs(ks, ) (A4) space, thus providing thien k£ branch point ak = 0, and the

where C, is a constant, and each functidh (k,7) satisfies second is a Fourier (Sommerfeld) integral. Its integrand, as a
the homogeneoug$no sources) problem with = k, on A. function of 4, varies on the two-sheet Riemann surfacef
Therefore, k, represents thgeneralized eigenvaluesf the ¢(h) = v'1 — h? for every fixedk. Here, the coefficient&;(g)
problem—they form the spectrum of natural modes—arfe meromorphic ik onI'. If Im k& = 0, a finite number
U.(k,7) represents the correspondiggneralized eigenfunc- of their polesh, (k), p = 1,2...Q are real-valued oty =
tions—they are the natural-mode field functions. The Poyntinffm g > 0} and located between 1 angE,. Eachpth residue
theorem applied to the natural-mode field and its compléx a function of the argument, (k) = /1 — h2, as follows:
conjugate leads to a conclusion, due to (A2), thatAgnthe

natural frequencies can be located only in the lower half-plane _ 2igy sin®(kgapd)
) . Res P(g) = ———F————7+—. (A10)
(Im k& < 0). It means that/(k, ) is analytic (has no poles) h=h,, hp(1 —ikg,d)
in the upper half-plane oho(Im & > 0) and on its real axis Then
(Im £ = 0). The convenience of the chosen definition of _ i61;

the principal sheet is that it leads to the symmetry of naturaIGijrat(kavf') 1
frequencies with respect to the imaginargxis (verified by the W)y 1= (D) p 1
direct substitution). Similarly, if: is onAo andkr > 1, then % [HO (k|7 =) = Ho (k|7 =7 D}

Q(k)
2 \'? . - Vigpy)V (gpy)
H(l) ~ _An ’LkT. A + 2 _\JpJ J* \IpJ)
D)~ () e (85) >
It is easy to see that natural-mode fields display exponential x cos(khy, |z — z'])
damping in time and exponential growth in thélirection. oo
Another important corollary of the Steinberg theorems is + / S(h)et = dh (A11)
that each natural frequengy is a piece-continuous function of R

the geometry of DR and dielectric constant. Continuity can be i
spoiled only if two or more natural frequencies coalesce; thé¥jhere Ny = i(1 —ikg,d)/2g, is a norm of thepth surface
can appear or disappear only at the boundary of the domairde,™ = {z’, =y’ + 2d} corresponds to the image of the
analyticity in’, i.e., at infinity onA or atk = 0. source point with respect to the plape= d, and S(h) is a
Suppose now that a 2-D DR is placed instatified medium  Uniformly bounded function of on the real axis of.
For definiteness, we shall consider the E-polarization case of al herefore, for any reak, in addition to the logarithmic
grounded slab witk, > 0 placed in the free half-space withPranch point al; =0, the stratified-medium Green’s fun_ctlon
e, = 1. This geometry is shown in Fig. 1(b); however, here we (k) has finite number of square-root branch_ points at
place the origin of coordinates at the ground plane, the sourcdin= *kp, » = 1,2,...Q located on the real axis of the
the first medium, and the observation point in fftie one. The Principal sheet\, of the logarithm, where, is the “critical
Green’s function of the background medium with & = 0 is frequency” of thepth guided modé,, (k,) = 1. Hence, the full

then given by domain of analytic continuation af*""**(k) to complexk is
; the Riemann surfac@ of the functionLn &k + Zlegp(k).
G?]-rat(k,ﬁ/f’) =015 ZHél)(k |7 —7|) This is a major difference from thelosedparallel-plate PEC
oo waveguide Green’s function, which has no logarithmic branch
+ K / R;(g) point but only an infinite number of simultaneous branch points
4t | g and poles ak, = wp/d(|p| = 0,1,2...), whered is the plate
- . , separation. The principal (“physical”) sheet is then selected as
x V'(gy" )V (gy)e™@==Ddh  (A6) @ = {—7/2 < argk < 37/2, Im g,(k) >0, p=1,2,...}.
whereg = (1 — h2)1/2, j = 1,2, and Therefore, itk is_ assumed in a bounded domain ﬁrand
) ikg(y—d) r — oo, the solution of the problem about DR located in the
V(gy) = sin(kgad)e , y>d first medium behaves as
sin(kgay), y<d - .
V/(y/) — eikg(y’—d) Uj(k/ 7_“) :Rjo(okv T) + W(k/ F)v J=12 (A12)
g2 = (2 — 1+ g*)V/2, (A7) Ry(k,@) = > a,H" (kr)e™?, Ry(k,7) =0
R1(g) is similar to that in (10) and can be cast into e (A13)
_ P(g) -1 Q + ihyka
Ri(9) " sin(kgad) Wk, ) :Z{ @J/(gpy)iill : a:‘> 0 (A14)
Plg) = 2ig sin(kgad) N (|h|_1) p=1 B, Vigpy)e ek, <0
g igsin(kgad) — ga cos(kgad) |h|—oo whereq,,, 5+, andQ are constants depending brExpression

(A8) (A12) can be considered as a “modified” Reichardt condition.
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It can be shown to guarantee that the natural frequencies angformly in any bounded domain @i. This is enough to prove
located on(2y only atIm & < 0. The second term in (A12) that the following property of the infinite-matrix operater
contains contributions of the polés as follows:Im h, < 0. holds true:

These poles are the guided-mode poles previously located on - -

the realh axis whenlm k& = 0; they shift now to the loweh Z Z | A (F)|? < oo (B6)
half-plane. For any fixed, the number of these poles is finite
Q(k). With condition (A12), in particular, (A2) and (A3) hold
true. Fortunately, the Steinberg theorems do not depend on Tieerefore, operator equatidh + A)X = 0 is a homogeneous
specific arrangement of the domain of analytic continuation incanonic Fredholm one [26] in the space of number sequences
because they are valid férin any compact subdomain. Thered,. Its characteristic numbeks (coinciding with the natural fre-
fore, all the properties of the natural-frequency spectrurflonquencies in view of the spectral equivalency) are given by the
are principally the same as in the case of the homogeneous hosts of determinant equatiddet(I + A(k)) = 0. It has been
medium. Modal fields here display exponential growth alalg  shown [27] that the proposed Galerkin-type numerical scheme
due to the contribution of the second term in (A12). This is bevith an explicit Fourier-series representation for the main part

m=—0o0 N=—00

cause for the guided moddsy k& < 0 entailsIm (kh,,) < 0. of the operator converges very fast. A convergence rate of the
discetization scheme is determined by the rate of decay of the
APPENDIX I matrix elements given by (B5) [31], [32]. One can see that the

wider the air gap between DR and the nearest dielectric interface
series expansions of the cylindrical functions, are w, the higher the rate of convergence. However, the numerical
' scheme is stable and convergent even for very narrow air gaps.
(n —1)12" In addition, due to a known result of the superconvergence of the
|z|” (B1) trigonometric projection methods [33], the rate of convergence
. . . . of generalized eigenvalu of the truncatedV x N coun-
uniformly with respect toz in any bounded subdomain Onterpart equation to the exiécvt valuesis twice higher than that

A. Fur'ther, the Fourier coeff.|C|ents of the_stratlfled—medlurgf the scattering or eigenvector problem solution determined by
Green'’s function can be cast into the following form:

The well-knownn > |z| estimates, which follow from the

" gy <o

Jn b
(2) < nl2n "

(B5).
_ (1) ' (h —ig)" 2igkb
Q,,(kb) = —H;’(2kb) + P(.G)Te dh (B2) ACKNOWLEDGMENT
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