
JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 20, NO. 8, AUGUST 2002 1563

Effect of a Layered Environment on the Complex
Natural Frequencies of Two-Dimensional WGM

Dielectric-Ring Resonators
Svetlana V. Boriskina, Member, IEEE, Trevor M. Benson, Senior Member, IEEE, Phillip Sewell, Member, IEEE, and

Alexander I. Nosich, Senior Member, IEEE

Abstract—An efficient and accurate algorithm based on the
combination of the Green’s function method and an analytical
regularization technique is applied to study the complex natural
frequencies and factors of two-dimensional (2-D) dielectric
resonators (DRs) in a layered environment. Frequency shift and
degeneracy splitting of the whispering-gallery modes (WGMs)
of circular-cylindrical and tubular DRs immersed into layered
dielectric media are computed and analyzed.

Index Terms—Analytical regularization, dielectric resonators
(DRs), Green’s functions, optical waveguide components.

I. INTRODUCTION

L OW-LOSS dielectric resonators (DRs) operating on the
whispering-gallerymodes (WGMs) have beenstudied both

theoretically and experimentally for a number of years. Their
various advantages, such as highfactors, simplicity of fabri-
cation, mechanical stability, good temperature compensation,
and suppression of spurious modes promote their widespread
use in various optical, microwave and millimeter-wave circuits.
Furthermore, they haveproven tobe essential components for the
design of novel optical devices, such as microlasers [1], high-
wavelength selective filters, wavelength division multiplexers
(WDMs) [2], polarization rotators [3], and can be useful for the
study of nonlinear optical effects [4].

Knowledge of the natural frequencies and quality factors of
isolatedDRs is of interest for some remote sensing and antenna
applications. Indeed, a number of approaches to the investiga-
tion of isolated resonators can be found, such as dielectric wave-
guide methods [5], radial and axial mode-matching methods [6],
[7], the method of moments (MoM) [8], the null-field method
[9], and finite difference time domain (FDTD) methods [10],
[11]. However, in most practical optoelectronic applications,
DRs are integrated as a part of a complex circuit. In this case,
the natural frequencies can differ significantly from that of an
isolated resonator due to field interactions in the coupling re-
gion. Accurate prediction of the behavior of such in situ DRs is

Manuscript received April 1, 2002. This work was supported in part by the
Royal Society & NATO Postdoctoral Fellowship to S. V. Boriskina.

S. V. Boriskina, T. M. Benson, and P. Sewell are with the School of Electrical
and Electronic Engineering, University of Nottingham, University Park, Not-
tingham NG7 2RD, U.K. (e-mail: eezsb@ gwmail.nottingham.ac.uk).

A. I. Nosich is with the Institute of Radio-Physics and Electronics, National
Academy of Sciences of Ukraine, Kharkov, 61085, Ukraine (e-mail: alex@
emt.kharkov.ua).

Digital Object Identifier 10.1109/JLT.2002.800297

crucial for full exploitation of their potential, and yet, to date,
there is a lack of computationally efficient analysis techniques
reported in the literature for this problem.

The objective of this paper is to present such a technique that
is not only highly accurate and very fast but also offers flexi-
bility and robustness, essential ingredients for practical design
software. Before describing the present approach, a brief review
will be made of the existing techniques that have yielded some
insight into the performance of such in situ DRs.

Some attempts have been made to study the complex frequen-
cies of DRs in a shielded microwave integrated circuit (MIC)
environment and to estimate the degradation offactors due to
conductor loss. For example, a perturbation method was pro-
posed in [12] for indirect determination of conductor fac-
tors of DRs by computing the relative difference between the
perturbed and unperturbed resonant frequencies. However, it is
required that these are evaluated beforehand using a rigorous
method. In [13], the conductor factor of a DR was deter-
mined by computing the stored energy and energy loss by the ef-
fective dielectric constant method. Moreover, an accurate tech-
nique based on a new definition of effective dielectric constants
in the dielectric waveguide model was used in [14] to obtain the
resonant frequencies of DRs in MIC environment. The mode-
matching technique was applied in [15] to calculate the resonant
frequencies of a ring DR on a dielectric substrate and two cou-
pled ring DRs inside a perfectly conducting waveguide cavity.

The analyses just described are only applicable in the shielded
case, which is common in microwave applications. However, the
study of DR characteristics in a nonshielded and, furthermore,
a stratified dielectric environment is much more important for
the optoelectronic applications. Unfortunately, this is even more
difficult since it requires taking into account the conditions at
infinity as well as the continuity conditions at all the dielectric
interfaces.

In [16], a simple circuit model of a DR coupled to a transmis-
sion line was proposed, and some applications of WGM DRs as
bandstop or directional filters and power combiners were dis-
cussed. However, the results presented for filter characteristics
were mostly experimental. Moreover, in the theoretical treat-
ment, the authors assumed that the radiation losses were almost
negligible, which is a very rough approximation for an open
system such as a waveguide-coupled DR.

Surface integral equations (IEs) were applied in [17] to study
the resonance frequencies of a dielectric disk on a dielectric sub-
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strate, although the effect of the substrate-guided waves was
neglected. This omission is significant since, in practical situ-
ations, it is vital to consider the excitation of resonators by sur-
face waves propagating along dielectric guides or, as in the case
of add/drop filters, launching surface waves in different guides
by the WGM of a DR. Indeed, as shall be highlighted, the inter-
action between DRs and dielectric waveguides, along with the
radiation losses from the DR, has a dramatic effect on the nat-
ural frequencies and especially onfactors.

A combination of the volume IE method and Galerkin tech-
nique was also used to analyze DRs in inhomogeneous environ-
ments [18] but is only applicable to resonators with separable
geometries, which is too restrictive in practice. The design of
waveguide-coupled microring resonators has been performed
using FDTD in [19]. However, the computational intensity of
FDTD techniques, as well as the need to use high-quality artifi-
cial absorbers and to avoid meshing-induced staircasing errors,
are well known. Finally, it should also be noted that standard
perturbation techniques can fail to give a correct description of
the high- WGM resonances as the inhomogeneity of the host
media causes a drastic shift of the resonant frequencies from
their free-space values.

Having discussed the approaches to the problem of in situ
DRs considered to date, it is clear that there is a need for a more
robust technique, one more suited to modern-day design tasks.
Such a technique has been developed in [20] and [21] and suc-
cessfully applied to study the performance of microwave WGM
filters based on the circular and ring DRs excited by a guided
mode of a grounded dielectric waveguide. However, the anal-
ysis presented in [21] only investigated the scattering problem
and as such was formulated entirely in the real-frequency do-
main. Furthermore, the applications considered in [21] are more
suitable for microwave structures.

This paper presents the analysis of the 2-D source-free gener-
alized-eigenvalue problem for a WGM DR in a layered medium.
As known, due to a power leakage, open resonators may have
only complex-valued natural frequencies that necessitate the an-
alytic continuation of the characteristic eigenvalue problem to
the complex domain. The spectrum of complex-valued frequen-
cies does not depend on the DR excitation; hence, their identi-
fication is an important task in the practical design process.

There are a number of significant issues that must be resolved
when the approach of [21] is generalized to the eigenvalue prob-
lems. These include the accurate computation of the Bessel and
Hankel functions of complex arguments and numerical treat-
ment of certain integrals not arising in the real-frequency case.
Finally, the problem is reduced to searching for the determi-
nantal zeros, which can now occur over a wide range of a com-
plex plane, rather than the real-axis problem previously con-
sidered. Therefore, a formulation of the open-DR eigenvalue
problem needs special attention, and this is presented in Sec-
tion II. Section III deals with the derivation of IEs, while Sec-
tion IV contains a brief description of how a regularized infi-
nite-matrix equation is obtained. Section V contains a review
of the major physical effects of the layered host medium on the
behavior of natural frequencies. Conclusions are summarized in
Section VI. Throughout the paper, the time-dependence conven-
tion is adopted and omitted.

Fig. 1. WGM ring-like DR in stratified media.

II. EIGENVALUE PROBLEM FORMULATION

In many practical optoelectronic applications, DRs are lo-
cated in the vicinity of flat dielectric interfaces, e.g., semicon-
ductor substrates or planar waveguides. Thus, we consider a
tubular dielectric cylinder (ring DR, for brevity) in a layered-di-
electric host medium. In particular, we shall consider a pair
of dielectric half-spaces [Fig. 1(a)], grounded dielectric slab
[Fig. 1(b)] and planar asymmetrical dielectric slab [Fig. 1(c)].
These geometries are of interest for optical bandstop filters,
couplers and sensors, and their microwave and millimeter-wave
counterparts. The outer and inner radii of the ring are denoted as

and , respectively. The cylinder separation from the nearest
dielectric interface is , so that the DR center is at distance

from the interface. We assume a 2-D problem (i.e.,
that the fields do not vary along theaxis). Then a total field can
be characterized by a single scalar function, which represents
either the or component, depending on the polarization.
Off the boundaries, the total field must satisfy the Helmholtz
equation

(1)
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where the permittivity is, for definiteness, a positive
step-wise function of coordinates. Continuity conditions on the
circular contours , and at the flat interfaces between the
flat layers of the host medium are the same as in the scattering
problem (see [21]).

As we consider an open-domain problem, the correct con-
dition should be imposed at infinity in the plane for the
complex values of . This condition can be established by using
a technique of [22], i.e., by analyzing the far-zone behavior of
the layered-medium Green’s function analytically continued to
complex . The fields can be represented as convolutions with
the Green’s functions (see [23]); therefore, they must have the
same far-zone behavior. In [22], such a radiation condition was
established for the real-scattering by a localized object in lay-
ered medium. It differs from classical Sommerfeld’s condition
by the presence of the guided-wave modes of host medium. Re-
ichardt’s condition [24] is known to be the complex-continu-
ation of Sommerfeld’s condition to the sheets of . In sim-
ilar manner, in our problem, the following modified condition
should be imposed (see Appendix I):

(2)

Here, , , are nor-
malized propagation constants of the natural modes of the host
medium, (depends on ) is a number of these modes,
and is a mode cross-sectional field (see [21]). Note that

in the case of Fig. 1(b). Besides, 1) in the
case of Fig. 1(a), (2) if in the case of Fig. 1(b), and (3) if

in Fig. 1(c). Coefficients and are some
functions of and , and are the Hankel func-
tions. Equation (1), along with the boundary and far-field condi-
tions, defines a generalized eigenvalue problem. As seen from
(2), the domain of analytic continuation of the field function
in is not wider than the infinite-sheet Riemann surfaceof
the function . On its principal
sheet , defined by the conditions and

, , the generalized
eigenvalues can be located only on the half-plane,
coming in pairs symmetric with respect to the imaginary axis.

These facts can be verified by using the complex Poynting
theorem applied to the modal field function (i.e., generalized
eigenfunction). Note that, at the real axis of, condition (2)
reduces to the radiation condition established in [22].

III. B OUNDARY INTEGRAL EQUATIONS (IEs)

Now, we build a coupled set of IEs for the eigenvalue problem
formulated in Section II. In doing so, we retrace all the steps
of the scattering-problem IEs derivation (see [21]), but keep in
mind that now the parametercan be complex-valued. First, we
present the fields outside the outer radius of DR, inside the ring,

and inside the inner radius of DR, respectively, as the single-
layer surface potentials over the corresponding-domain contour

(3)

(4)

(5)

Validity of representations (3)–(5) for complexfollows from
the Reichardt condition (see Appendix I and [23]). Here,
and are the -type Green’s functions of the homo-
geneous medium with permittivity and , respectively, and

is the Green’s function of the layered dielectric medium,
all continued to complex, i.e.,

(6)

(7)

(8)

In the integrands of the nonsingular terms of (8), the fol-
lowing factors appear:

1. Two dielectric half-spaces

(9)

2. Grounded dielectric slab

(10)

3. Asymmetrical dielectric slab. See (11) at the bottom of the
next page.

The Green’s functions given by (8) correspond to the case
where both the source and observation points are in the upper
half-space, i.e., , , and satisfy the continuity
conditions at the media interfaces. Further, by imposing the
boundary conditions on the resonator contours, a set of four cou-
pled homogeneous singular IEs for the unknown density func-
tions can be obtained similarly to [21, eqs. (14)–(17)]. The aim
is to determine those complex values of the parameterthat
generate nontrivial solutions of these IEs.
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IV. PROCEDURE OFANALYTICAL REGULARIZATION

The Green’s functions , , and in the kernels of ob-
tained IEs are known to have logarithmic singularities at

. To handle the singular parts of the kernels of IEs, we use
the integral operator regularization (semi-inversion) [20], [21].
Here, it is based on the analytical inversion of the frequency-
dependent singular parts corresponding to the isolated (in the
free-space) ring DR. We recall that the free-space scattering
from a circularly layered cylinder can be solved in explicit form
leading to infinite series. This is due to the fact that the func-
tions form the set of orthogonal eigenfunctions
of the integral operator with the corresponding kernel functions.
Therefore, now we build a Galerkin-type MoM scheme with the
aforementioned exponents as global expansion functions. Here,
we expand the unknown functions as follows (the superscript

is again omitted):

(12)

with similar expansions in other partial domain, and handle the
kernel functions and the right-hand side (RHS) functions of IEs
similarly to [21]. On using some algebra and the orthogonality
of exponents in the term-by-term integration, we exclude some
of the unknowns and arrive at the homogeneous infinite-matrix
equation for the coefficients , where

, , as follows:

(13)

where ,

(14)

(15)

For simplicity, if (solid dielectric resonator), then

(16)

and, if otherwise, the expressions of [21, eq. (28)] are valid.
Here, and are the Bessel and Neumann functions, re-

spectively, and the prime is for the derivative with respect to the
argument. As known from [25], a free-from-error accumulation
algorithm for computing the Bessel functions with complex ar-

Fig. 2. Complexh plane and the contour of integration chosen for numerical
evaluation of spectral integrals.

guments must be based on the backward-recurrence technique.
However, for the Neumann functions, it must start from cer-
tain intermediate index value and continue up and down. The
evaluation of the functions is one of the most time-con-
suming parts of the whole algorithm, since it needs a numerical
integration. It should be done carefully in view of the integrand
function behavior. Using in (15) wavenumbers normalized by
plays a crucial role since it brings the integration contour to the
real axis (Fig. 2) for any .

In the case of the geometries of Fig. 1(a) and (c), there are four
branch points on the original integration contour, at
and . If, however, in Fig. 1(c), then there
is only one branch point at , and this is the case of
Fig. 1(b). Besides, in the cases of Fig. 1(b) and (c), there exists
a finite number of poles at corresponding to
the natural modes of the slab that are guided ones
if . For these modes, one can verify that if ,
then .

To smooth the integrand and speed up computations, we
follow the procedure frequently met in the computations of
Sommerfeld’s integrals. First, we convert the integrals to the
ones along the positive semi-axis. Then, the path of
integration is deformed to be composed of the four straight-line
segments between the points: 1) ; 2) ; 3)

; 4) ; and 5) , where ,
(Fig. 2). Location of the termination point depends

on the rate of the integrand decay on the last segment and can be
taken as . Thus, the branch points are bypassed,
and the contribution of the poles is accounted for automatically,
provided that they lie above the deformed contour.

To determine the complex natural frequencies of the WGMs
of the resonator, we search the values of the normalized fre-
quency parameter that are characteristic numbers of the ma-

(11)
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trix operator , i.e., the points at which the determi-
nant of the matrix equation vanishes, as follows:

(17)

The Fredholm second-kind nature of (13), as well as the an-
alyticity of operators in on , follows from the fol-
lowing estimation: . Here, and

are large numbers (for details, see Appendix II). Then, the
Fredholm-type theorems for operators depending on parameter
[26] guarantee that the characteristic numbers of (17), i.e., the
eigenvalues, form a countable set of isolated points on. Due
to all this, after the matrix truncation, (17) can be solved numer-
ically, with a guaranteed convergence to the exact values of the
characteristic numbers of infinite matrix. Convergence is under-
stood here as the possibility of having computation error pro-
gressively minimized to machine precision, by taking the trun-
cation number greater. The proof is based on the results of
[27]. The roots of (17) are found by searching in the complex
domain with the Powell hybrid method [29]. Here, accuracy of
computing (a) matrix elements, (b) determinant as a function
of , and (c) roots of (17) should be kept as ,
respectively. Once the complex natural frequency has been de-
termined, its factor can be obtained as follows:

(18)

Thus, although in practice the matrix used in (17) is truncated,
the analytical regularization procedure reduces the impact of
this, and the method shows guaranteed and fast convergence
with increasing truncation number.

V. NUMERICAL RESULTS AND DISCUSSION

WGMs in an isolated DR can be classified, according to [7]
and [16], as or , depending on the polar-
ization. By tradition, the notation corresponds to
the case of the transverse electric (magnetic) field being essen-
tially tangential to the DR cross section. This implies that the
field component parallel to the DR axis is of opposite nature,
so that modes correspond to the polarization.
In a circular-cylindrical DR, WGMs can be further character-
ized by two modal indexes and . The first index denotes
the number of azimuthal variations of the mode field and coin-
cides with the order of the Bessel function that determines the
field behavior. The second indexdenotes the number of vari-
ations along the radius of DR. In an isolated DR, WGMs are
double-degenerate due to the circular symmetry, which corre-
sponds to equivalency in the or field depen-
dence on the azimuth coordinate. These two possible rotating
senses are denoted by superscript.

When a DR is integrated into an optical circuit, the coupling
often occurs across a gap between the DR and a waveguide [2],
[19]. The width of this gap determines the coupling degree be-
tween the waveguide and resonator. The coupling may also vary
if the width of the slab waveguide changes, hence contributing
to variation of the radiation losses of DR. It should be noted
that double-degenerate resonant frequencies of an isolated DR
split when the axial symmetry of the problem is disturbed by

Fig. 3. Fields patterns of (a)WGH and (b)WGH . Both are resonances
of the DR located over the grounded dielectric slab waveguide with parameters
d=a = 1, " = 10 + 0:001i, and" = 4:8.

the layered environment. Instead, one obtains two independent
families of natural modes having the fields expandable in terms
of or , respectively, that is,
symmetric or asymmetric with respect to theaxis. In our nota-
tion, the superscript will correspond to this sort of symmetry.

Field patterns of these natural modes are presented in Fig. 3(a)
and (b) for the modes with one and two radial field variations,
respectively. For brevity, we shall refer to the real part of a
natural frequency as a resonance frequency. Note that

Fig. 4(a)–(f) show the resonance frequencies andfactors
of the solid circular DR modes as functions of the width of the
separation gap (assumed air) for three cases of host media and
for modes with one [Fig. 4(a), (c), and (e)] and two [Fig. 5(b),
(d), and (f)] radial variations. It can be seen that the field inter-
actions between the slab and WGM DR do not cause significant
deviation of actual resonance frequency from that of isolated
DR. However, factors may fall down drastically if separation
gets smaller. Therefore, the coupling gap effects on the perfor-
mance of the WGM DRs have to be taken into account, espe-
cially when a small gap is introduced. Larger gaps result in less
perturbations of the WGM fields and, hence, less change in the
natural frequencies. Furthermore, it is evident that modes with
one radial field variation are much more sensitive to the pres-
ence of dielectric interfaces.

Increasing the waveguide thickness affects the DR complex
natural frequencies, as shown in Fig. 5(a)–(c). Fig. 5(a) presents
propagation constants of the grounded lossless dielectric-slab
waveguide surface modes versus its normalized thickness.
It can be seen that as the value of increases, new surface
modes appear and resonance frequencies [Fig. 5(b)] andfac-
tors [Fig. 5(c)] of the DR also experience oscillations. Crosses
on the graphs show the points at which new surface modes ap-
pear. Besides, decreasing the thickness of a dielectric layer to
zero, we can consider a DR located over a perfect electric con-
ductor (PEC) plane. It can be seen that the presence of the PEC
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Fig. 4. Shift of the WGM resonance frequencies of a circular-cylindrical DR
(" = 10 + 0:001i) in the free half-space(" = 1) due to the presence of
(a), (b) dielectric-dielectric interface (" = 9); (c), (d) grounded dielectric-slab
waveguide (d=a = 1, " = 4:8); (e), (f) assymetrical dielectric waveguide
(d=a = 1, " = 6, " = 4).

plane has a strong influence on modes and almost does
not affect modes of the DR.

Fig. 6(a) and (b) shows the resonance frequencies andfac-
tors of a DR for the case of the geometry of Fig. 1(a) as func-
tions of the lower half-space permittivity. Since the dielectric
interface does not support any surface waves, no oscillation is
visible, and it is seen that the factors of resonances are the
most affected if the values of dielectric constants of the lower
half-space and DR coincide. This is because here both
the separation and contrast between DR and lower half-space is
small, and the DR modal field leaks out with minimum reflec-
tion. Ring DRs are often used to provide a wider range free of
parasitic modes. Since WGMs are characterized by a strong en-
ergy confinement within a small region between the outer rim
and inner caustic, removing dielectric material from the central
part of a DR does not affect the WGM field unless the inner ra-
dius of DR gets smaller than the radius of the caustic.

Fig. 7 shows the shifts in resonance frequencies and degra-
dation of factors due to the change of parameter. One
can see that increasing the inner radius of the DR destroys reso-
nances with several radial variations, while high-resonances
having one radial variation can still survive in very thin rings.
Here, there is a phenomenon that cannot be predicted by any ap-
proximate technique. An increase of thefactors of the prin-

Fig. 5. Normalized propagation constants of the (a) grounded dielectric-slab
eigenmodes, (b) WGM natural frequencies, and (c)Q factors of DR versus the
slab thicknessw=a = 0:01, " = 10 + 0:001i, " = 4:8.

Fig. 6. (a) WGM resonance frequencies and (b)Q factors of DR over the
dielectric boundary versus the permittivity of the lower half-space.w=a =
0:001, " = 10 + 0:001i, " = 1.

cipal-family modes can be achieved at certain values of,
where a coincidence of the real parts of natural frequencies with
those of the modes having two radial field variations occurs.
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Fig. 7. Resonance frequencies andQ factors of WGMs of a ring DR located
over a grounded dielectric slab versus the inner radius of the resonator.w=a =
0:01, d=a = 1, " = 10+ 0:001i, " = 4:8. In (a), the solid lines are for the
(+) oscillations, and the circles are for the(�) ones.

VI. CONCLUSION

A full-wave IE approach has been applied to the analysis of
the natural frequencies of the WGM DRs in a layered environ-
ment. Based on this, an efficient numerical technique has been
developed, and complex frequencies of the WGMs of ring DRs
in several types of layered dielectric media have been calculated.
Due to the analytical regularization, our solutions possess uni-
form numerical convergence, and no spurious eigenvalues ap-
pear. It has been shown that the frequency degeneration of the
WGMs of an isolated DR is removed if the DR is immersed into
a stratified medium.

Furthermore, a different dependence of the WGMs with one
and two radial variations on the arrangement of host medium has

been demonstrated. Thus, the method of [21] has been modified
to the study of eigenvalue problems that are important in opto-
electronic applications. Together with recent progress in devel-
oping a generalized method of analytical regularization (MAR)
algorithm applicable to the study of 2-D DRs of arbitrary cross
section [30], this forms a universal framework for accurate sim-
ulation of a wide class of DRs.

APPENDIX I

If a 2-D DR is placed infree spaceand excited by a known lo-
calized source with a harmonic time dependence ,
, then the adequate condition imposed on the total-field func-

tion at is the Sommerfeld condition [23], [28].
The Green’s function of the Helmholtz equation matched to this
condition is

(A1)

The matching is understood in the sense that the following prop-
erty holds:

(A2)

where is an arbitrary closed curve with outer unit normal,
and satisfies the Sommerfeld condition as well. Therefore,
one can use Green’s function for building the scattering-theory
contour IEs, whose kernels are and its normal derivative
[23], [28]. Furthermore, one can verify that no realcan be
an eigenvalue of the scattering problem. It is evident that the
domain of analytic continuation of in is the Riemann
surface of the function . This is an infinite-sheet surface
with the branch point at . Hence, the domain of analyticity
of cannot be wider than . The principal sheet is
selected by making a branch cut along the negativeaxis as
follows: .

Reichardt has shown [24] that for the complex values of,
the following condition plays the role of analytic continuation
of Sommerfeld’s condition: at (actually, for all ),
the solution is expandable as a uniformly convergent series

(A3)

This condition ensures that even for complex, the property
(A2) holds true. Therefore, the Fredholm second-kind IEs
known in the real- scattering analyzes [23], [28] are valid
for all complex values of as well. This enables one to use
the theory of operator-valued functions to study the properties
of . Here, the operator generalization of the Fredholm
theory made by Steinberg [26] leads to the conclusion that

is no more than a finite-meromorphic function of
varying on , i.e., it may have only a countable number of
finite-multiplicity poles with the single accumulation point at
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infinity. Another immediate corollary is that the residues in the
simple poles are

(A4)

where is a constant, and each function satisfies
the homogeneous(no sources) problem with on .
Therefore, represents thegeneralized eigenvaluesof the
problem—they form the spectrum of natural modes—and

represents the correspondinggeneralized eigenfunc-
tions—they are the natural-mode field functions. The Poynting
theorem applied to the natural-mode field and its complex
conjugate leads to a conclusion, due to (A2), that, on, the
natural frequencies can be located only in the lower half-plane

. It means that is analytic (has no poles)
in the upper half-plane of and on its real axis

. The convenience of the chosen definition of
the principal sheet is that it leads to the symmetry of natural
frequencies with respect to the imaginaryaxis (verified by the
direct substitution). Similarly, if is on and , then

(A5)

It is easy to see that natural-mode fields display exponential
damping in time and exponential growth in thedirection.

Another important corollary of the Steinberg theorems is
that each natural frequency is a piece-continuous function of
the geometry of DR and dielectric constant. Continuity can be
spoiled only if two or more natural frequencies coalesce; they
can appear or disappear only at the boundary of the domain of
analyticity in , i.e., at infinity on or at .

Suppose now that a 2-D DR is placed into astratified medium.
For definiteness, we shall consider the E-polarization case of a
grounded slab with placed in the free half-space with

. This geometry is shown in Fig. 1(b); however, here we
place the origin of coordinates at the ground plane, the source in
the first medium, and the observation point in theth one. The
Green’s function of the background medium with is
then given by

(A6)

where , , and

(A7)

is similar to that in (10) and can be cast into

(A8)

(A9)

The first term in the RHS of (A6) is the same as in the free
space, thus providing the branch point at , and the
second is a Fourier (Sommerfeld) integral. Its integrand, as a
function of , varies on the two-sheet Riemann surfaceof

for every fixed . Here, the coefficients
are meromorphic in on . If , a finite number
of their poles , are real-valued on

and located between 1 and . Each th residue

is a function of the argument , as follows:

(A10)

Then

(A11)

where is a norm of the th surface
mode, corresponds to the image of the
source point with respect to the plane , and is a
uniformly bounded function of on the real axis of .

Therefore, for any real , in addition to the logarithmic
branch point at , the stratified-medium Green’s function

has finite number of square-root branch points at
, located on the real axis of the

principal sheet of the logarithm, where is the “critical
frequency” of the th guided mode . Hence, the full
domain of analytic continuation of to complex is
the Riemann surface of the function .
This is a major difference from theclosedparallel-plate PEC
waveguide Green’s function, which has no logarithmic branch
point but only an infinite number of simultaneous branch points
and poles at , where is the plate
separation. The principal (“physical”) sheet is then selected as

.
Therefore, if is assumed in a bounded domain onand

, the solution of the problem about DR located in the
first medium behaves as

(A12)

(A13)

(A14)

where , , and are constants depending on. Expression
(A12) can be considered as a “modified” Reichardt condition.
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It can be shown to guarantee that the natural frequencies are
located on only at . The second term in (A12)
contains contributions of the poles as follows: .
These poles are the guided-mode poles previously located on
the real axis when ; they shift now to the lower
half-plane. For any fixed , the number of these poles is finite

. With condition (A12), in particular, (A2) and (A3) hold
true. Fortunately, the Steinberg theorems do not depend on the
specific arrangement of the domain of analytic continuation in
because they are valid forin any compact subdomain. There-
fore, all the properties of the natural-frequency spectrum on
are principally the same as in the case of the homogeneous host
medium. Modal fields here display exponential growth along
due to the contribution of the second term in (A12). This is be-
cause for the guided modes, entails .

APPENDIX II

The well-known estimates, which follow from the
series expansions of the cylindrical functions, are

(B1)

uniformly with respect to in any bounded subdomain on
. Further, the Fourier coefficients of the stratified-medium

Green’s function can be cast into the following form:

(B2)

where and is given by (A8). Introducing
the function

(B3)

where is a residue of at , we bring (B2) to
the form

(B4)

As the integrand of the last term in (B4) is bounded by
for all real , this integral is analytic in . It

is easy to verify that each has square-root branch points
associated with . Hence, it follows that

is analytic on the Riemann surface.
Further, as grows more rapidly than any power function,

the asymptotic large- behavior of is the same as for
the Hankel function. Eventually, on making use of the formulas
(B1), one can see that

(B5)

uniformly in any bounded domain on. This is enough to prove
that the following property of the infinite-matrix operator
holds true:

(B6)

Therefore, operator equation is a homogeneous
canonic Fredholm one [26] in the space of number sequences

. Its characteristic numbers (coinciding with the natural fre-
quencies in view of the spectral equivalency) are given by the
roots of determinant equation . It has been
shown [27] that the proposed Galerkin-type numerical scheme
with an explicit Fourier-series representation for the main part
of the operator converges very fast. A convergence rate of the
discetization scheme is determined by the rate of decay of the
matrix elements given by (B5) [31], [32]. One can see that the
wider the air gap between DR and the nearest dielectric interface

, the higher the rate of convergence. However, the numerical
scheme is stable and convergent even for very narrow air gaps.
In addition, due to a known result of the superconvergence of the
trigonometric projection methods [33], the rate of convergence
of generalized eigenvalues of the truncated coun-
terpart equation to the exact valuesis twice higher than that
of the scattering or eigenvector problem solution determined by
(B5).
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