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ABSTRACT
We consider the H-polarized plane wave scattering from an infinite
flat grating of perfectly electrically conducting strips, placed on the
interface of a dielectric slab. We reduce this problem to a dual series
equation for the complex amplitudes of the Floquet spatial harmon-
ics. Then,weperformanalytical regularizationof this equation, based
on the inversion of the static part of the problem with the aid of the
Riemann-Hilbert Problem. This yields a Fredholm second-kind infi-
nite matrix equation, numerical solution of which has a guaranteed
convergence. Numerical results obtained demonstrate how the rate
of convergence depends on the geometrical parameters and then
concentrate on the resonance effects in the reflection and transmis-
sion. We reveal and discuss ultra-high-Q resonances on the lattice
modes of such a composite grating, overlooked in earlier studies.
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1. Introduction

The scattering of plane waves from the infinite flat grating made of perfect electrically
conducting (PEC) strips is a canonical problem of computational electromagnetics since
a hundred years ago [1]. Within this time, two mathematically grounded approaches that
lead to the algorithms possessing the guaranteed convergence have been developed. One
of them is based on the method of analytical regularization (MAR) and uses explicit inver-
sion of the static part of the problem, i.e. its most singular part [2]. Such inversion can be
performed in several equivalent ways. According to one of them, the problem is reduced
to a log-singular or hyper-singular, depending on the polarization, electric-field integral
equation (IE). Then, it is discretized using Galerkin projection on the weighted Chebyshev
polynomials, which form the set of orthogonal eigen functions of IE static part [3–5]. Impor-
tant improvements to this technique, related to the computation of the coupling integrals,
were introduced in [6,7].

The other way is to reduce the problem to the dual series equation (DSE) for the
amplitudes of the Floquet harmonics. Then DSE’s static-part inversion is done using the
Riemann-Hilbert Problem (RHP) method [8,9]. This way can be also viewed as application
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Figure 1. The cross-sectional geometry of a flat PEC strip grating on top of a dielectric layer, illuminated
by a plane wave.

of the discrete Fourier transform to the previously explained technique. In each case, the
resulting infinite-matrix equation is a Fredholm second-kind equation. Then the Fredholm
theorems guarantee the convergence in the sense that the larger the matrix truncation
order, the closer the solution to exact one, in a certain norm.

The second approach is based on the direct numerical solution of the same singular IEs
using the Nystrom-type discretizations and numerical quadratures [10,11]. In this case, the
convergence is guaranteed by the theorems of approximation of singular integrals using
the quadratures [12,13].

These solutions for the PEC-strip gratings in the free space have been further adapted to
treat the imperfect gratingsmade of resistive (including graphene), impedance, and dielec-
tric strips [9,14–16]. Naturally, this implies using the impedance boundary condition or the
generalized boundary condition.

Still in practical situations, strip gratings are usually placed inside a dielectric layer or
on top of it – see Figure 1. In the presence of such layer, the corresponding modification
of the mentioned above approaches and methods needs some analytical work however is
always possible. This is because the IE singularities (related always to the static parts) remain
the same. A MAR-RHP approach was first applied to such a problem with PEC strips in [17]
although no numerical results were published. Later, it was used in [18,19] to study PEC
strip gratings on the top of chiral and magnetic layer, respectively.

The examples of theMAR-Galerkin solutionsof that kind canbe found in [19–27]. In some
of thementionedaboveworks, extremely sharp resonances canbe spotted in thenumerical
results for the H and E-polarized plane-wave reflectance, transmittance, and absorbance.
Still, these resonances, associated to the so-called lattice modes, remain insufficiently
investigated.
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Therefore, we would like to apply a MAR-RHP solution to the scattering of H-polarized
plane wave by a PEC strip grating on a dielectric layer. It can be anticipated that the
algorithm obtained will be very efficient and enable us to focus numerical analysis on
the lattice-mode resonances. Besides, unlike Nystrom-type discretizations, it should be
amenable to analytical solution in the form of asymptotic power series, see [2,9,15,17], suit-
able for analysis of eigenvalues and associated resonances. Such analysis is envisaged as
the next step in our on-going research into the lattice modes.

2. Formulation of problem

Consider an infinite flat grating of PEC strips with zero thickness and width d, located in
the plane y = 0 with period r (Figure 1). This plane is the top interface of a homogeneous
dielectric layer (substrate) of the thickness h and relative dielectric permittivity ε. The H-
polarized plane wave is incident at the angle β and depends on time as e−iωt .

In the case of the H-polarization, the field components are (Ex , Ey , 0) and (0, 0,Hz). It is
convenient to choose Hz as the “basic” component; we denote it U(x, y).

The given incident field is a plane wave,

Uin(x, y) = e−ik0y sinβ−ik0x cosβ , y > 0, (1)

where k0 = ω/c = ω(ε0μ0)
1/2, c = 1/(ε0μ0)

1/2. Then the total field is a sum, Utot = Uin +
U(1), in the domain #1, andUtot = U(2,3)in the domains ##2,3. Thus, we obtain the following
boundary value problem for U:

(I) it must satisfy the 2-D Helmholtz equation everywhere outside the strips and the slab
interfaces,

(∇2 + k20)U
(1,3)(�r) = 0, y > 0, y < −h

(∇2 + k20ε)U
(2)(�r) = 0, −h < y < 0

(2)

(II) the transmission conditions at thewhole lower interface, y = −h, x ∈ Re : {−∞ < x <

+∞},
U(2) = U(3), ∂U(2)/ε∂y = ∂U(3)/∂y, (3)

and at the slots �r ∈ S = Re\M of the upper interface,

U(1) + Uin = U(2), (∂U(1) + ∂Uin)/∂y = ∂U(2)/ε∂y, (4)

plus the PEC boundary condition on the strips, i.e. �Etg(�r) = 0 at �r ∈ M : {y = 0, |x +
np| < d, n = 0,±1,±2, . . .}, that means

∂U(1)/∂y = −∂Uin/∂y, ∂U(2)/∂y = 0, (5)

(III) the radiation condition,whichmeans that at y → ±∞ the scattered fieldmust contain
only “outgoing” waves, and

(IV) the condition of local finiteness of power: the power, stored in any finite space domain
D tends to zero if D → 0; this condition determines the edge behavior of the function
U: it must tend to zero as a square root of the distance to the edge.
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Additionally, the periodicity of the domainM, together with the shape of (1), entails the
quasi-periodicity property,

U(x + p) = e−ik0p cosβU(x) (6)

Conditions (I)–(IV) provide the uniqueness of the solution: if the function U exists, then it is
unique.

3. Dual series equation

Thanks to the quasi-periodicity (6), the scattered field in the upper half-space (domain #1)
is sought as a Floquet series,

U(1) =
∞∑

n=−∞
ane

i(γny+βnx), y > 0, (7)

the field in the dielectric slab (domain #2) as

U(2) =
∞∑

n=−∞
(bne

iγ sl
n y + cne

−iγ sl
n y)eiβnx , 0 > y > −h, (8)

and the field in the lower half-space (domain #3) as

U(3) =
∞∑

n=−∞
dne

i(−γny+βnx), y < −h, (9)

Here, we have introduced the following notations:

γn = (k20 − β2
n)

1/2, γ sl
n = (k20ε − β2

n)
1/2,βn = 2πn/p − β0, (10)

so that γ0 = k0 sinβ , β0 = k0 cosβ .
The reflectance and transmittance are the power fractions reflected from and trans-

mitted through the slab with grating. They are expressed via the Floquet harmonic
amplitudes as

Pref = γ0
−1

∑
|n−κ cosβ|<κ

γn|an|2, Ptr = γ0
−1

∑
|n−κ cosβ|<κ

γn|dn|2. (11)

where we have denoted κ = p/λ. Substituting (7)–(9) into the conditions (3), we obtain

∞∑
n=−∞

(bne
−iγ sl

n h + cne
iγ sl
n h)eiβnx =

∞∑
n=−∞

dne
iγnheiβnx , (12)

1
ε

∞∑
n=−∞

(iγ sl
n bne

−iγ sl
n h − iγ sl

n cne
iγ sl
n h)eiβnx =

∞∑
n=−∞

−iγndne
iγnheiβnx (13)

Since these series coincide on the entire period, we replace themwith term-wise equations
and exclude the unknowns bn and cn, expressing them via dn,

bn = 1
2dne

iγnh
(
1 − γnε

γ sl
n

)
eiγ

sl
n h, cn = 1

2dne
iγnh

(
1 + γnε

γ sl
n

)
e−iγ sl

n h (14)
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According to the PEC conditions (5) on the strips, �r ∈ M,

∞∑
n=−∞

(iγ sl
n bn − iγ sl

n cn)e
iβnx = 0, (15)

− k0 sinβeiβ0x +
∞∑

n=−∞
γnane

iβnx = 0. (16)

On the slots, �r ∈ S, the conditions (4) yield

eiβ0x +
∞∑

n=−∞
ane

iβnx =
∞∑

n=−∞
(bn + cn)e

iβnx (17)

− k0 sinβeiβ0x +
∞∑

n=−∞
anγne

iβnx = 1
ε

∞∑
n=−∞

(γ sl
n bn − γ sl

n cn)e
iβnx (18)

Thanks to (15) and (16), Equation (18) is satisfied on the entire period. Therefore, on
substituting bn and cn from (14) and introducing new coefficients (n = 0,±1, . . . ),

Mn = −δn,0k0 sinβ + γnan, (19)

where δn,0 is the Kroenecker symbol, we see that

dn = Mnεe
iγnh[iγ sl

n sin(γ sl
n h) + γnε cos(γ

sl
n h)]

−1 (20)

On denoting φ = 2πx/p and θ = πd/p and introducing

�n = p

2π

⎡
⎣ 1

γn
− ε

γ sl
n

(γ sl
n − γnε)eiγ

sl
n h + (γ sl

n + γnε)
−iγ sl

n h

(γ sl
n − γnε)eiγ

sl
n h − (γ sl

n + γnε)e−iγ sl
n h

⎤
⎦

−1

, (21)

the expression (17) enables us to derive a dual series equation,

⎧⎪⎪⎨
⎪⎪⎩

∞∑
n=−∞

xn�neinφ = 2�0, θ < |φ| ≤ π ,

∞∑
n=−∞

xneinφ = 0, |φ| < θ ,
(22)

where new unknowns are

x0 = M0(�0)
−1 + 2, xn = Mn(�n)

−1. (23)

Note that, if |n| → ∞, then the weight function in (22) behaves as �n = i(1 + ε)−1|n|
[1 + O(1/|n|) + O(e−|n|2πh/p)].
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4. Regularization of DSE

To make analytical regularization, we introduce

�n = |n| + i(1 + ε)�n (24)

and cast DSE (22) to the canonical form,⎧⎪⎪⎨
⎪⎪⎩

∞∑
n=−∞

xn|n|einφ =
∞∑

n=−∞
xn�neinφ − i(1 + ε)20, θ < |φ| ≤ π ,

∞∑
n=−∞

xneinφ = 0, |φ| < θ ,
(25)

The left-handpart of (25) forms the RHPon the unit circle, solution ofwhich is knownand
expressed via the Plemelij-Sokhotskii formulas. Details of this procedure can be found, for
instance, in [28,8,9,15]; note that it exploits explicitly the edge condition (IV). When applied
to the full Equation (22), this yields an infinite matrix equation,

xm =
∞∑

n=−∞
Amnxn + Bm, m = 0,±1,±2, . . . (26)

Amn = �n(κ , ε, h/p)Tmn(θ), Bm = −i(1 + ε)20Tm0(θ), (27)

The functions Tmn(θ) are expressed via the Legendre polynomials Pm of the argument
u = − cos θ , see [28,8,9],

Tmn(θ) = (−1)m+n

2(m−n) [Pm(u)Pn−1(u) − Pm−1(u)Pn(u)],m �= n, (28)

T00(θ) = − ln 1
2 (1 + cos θ), (29)

Tmm(θ) = 1
2|m|

[
1 +

∑|m|
s=1

ts(u)Ps−1(u)

]
, m �= 0, (30)

where t0 = 1, t1(u) = −u, ts(u) = Ps(u) − 2uPs−1(u) + Ps−2(u).
The large-index asymptotics of the Legendre polynomials allow seeing that the follow-

ing inequalities hold true:

+∞∑
m,n=−∞

|Amn|2 < ∞,
+∞∑

m=−∞
|Bm|2 < ∞, (31)

Hence, Equation (26) is a Fredholm second-kind matrix equation in the space of num-
ber sequences l2 and hence the convergence of its numerical solution for progressively
larger truncation numbers is mathematically guaranteed. Note that expressions (27) are
combinations of elementary functions, need no numerical integrations, and hence can be
easily computed with machine precision. This is an advantage before the other MAR-like
techniques, such as [3–5,14,20–27].

Inspection of (24) and (27) shows that both�n and Amn are proportional to the normal-
ized frequency, κ = p/λ. This means that the regularization, i.e. semi-inversion of DSE, is
performed via the analytical inversion of the static part.
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Figure 2. The error, in the l2-norm, in the computation of unknown coefficients versus the matrix
truncation order for the grating withβ = 90° and 45°, d/p = 0.5, and different parameters ε and h/p,
as indicated in the inset. The normalized frequency is κ = 14.1 for (a) and (c), and κ = 100.1 for
(b) and (d).

5. Convergence and validation

To visualize the convergence of the numerical solution, we consider normal and inclined
incidence, β = 90◦and 45°, and select two values of the normalized frequency κ = p/λ,
namely 14.1 and 100.1. We compute the relative error, in the l2-norm, of the solution found
with varying truncation order N as compared to N = 400, for several values of the grating
and slab parameters,

ex(N) =
(

400∑
n=−400

|xNn − x400n |2
)1/2( 400∑

n=−400

|x400n |2
)−1/2

(32)

This value can be considered as the near-field error. As one can see from Figure 2, it starts
exponential decay as soon as N becomes larger than κ + 5.

In the analysis of the wave scattering from gratings, normally the phenomena of reflec-
tion and transmission, in terms of the power, are interested in. Therefore, we define and
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Figure 3. The far-field error versus the order of truncation for the grating with d/p = 0.5, angle of
incidence β = 90° and 45°, and h/p and ε as indicated. κ = 14.1 (a), (c) and κ = 100.1 (b), (d).

compute the far-field error as a function of N,

eσ (N) = |σN − σ400|/σ400, (33)

where σ is either transmittance or reflectance, given in (11).
The results of computations are shown in Figure 3. With an increase in the truncation

order N over κ , which is marked by red arrows, the error decreases, i.e. the accuracy of the
calculation increases. As visible, the rateof convergence is thehighest in the caseof absence
of dielectric layer,while thicker andoptically denser slabs entail larger values ofN to achieve
the same accuracy. In contrast, the fill factor, d/p, and the angle of incidence, β , do not
change the rate of convergence.

As a proof of validation, we present, in Figure 4, the comparison of our results with those
of [25], computed by a different accurate technique, MAR-Galerkin with Chebyshev’s poly-
nomials. Here, we show the absolute value of the reflectance of PEC strip grating on top
of dielectric substrate versus the frequency in the range κ ≤ 1, where only the 0-th Flo-
quet harmonic of the scattered field is radiating. The data for freestanding strip array and
for unloaded dielectric slab are also shown. The corresponding curves visually overlap that
is understandable because both methods are convergent and the orders of discretization
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Figure 4. Comparison of the results of [25] and MAR-RHP using (26), for p = 5 mm, d = 1 mm, h = 1
mm,ε = 2.2 (i.e.d/p = h/p = 0.2). Absolute valueof the amplitude reflection coefficient of stripgrating
on top of dielectric substrate versus the frequency in the single-mode range, 0 < κ < 1. The plots for
freestanding strip array and for bare dielectric slab are also shown.

provide 4–5 correct digits. A striking feature of the plot for the narrow-strip (d = 0.2p) grat-
ing on the thin (h = 0.2p) dielectric slab is a sharp total-reflectance peak at 57GHz. This is a
resonance on the lattice mode, discussed below. Off resonance, the reflection is almost the
same as for a bare slab.

6. Numerical results: lattice-mode resonances

On the verification of our code, we present, in Figure 5(a), the plots of the reflectance (11) as
a function of the normalized frequency, for three values of the strip width-to-period ratio,
d/p = 0.9, 0.5 and 0.1, for the normal incidence. Note the sharp bends of all curves exactly
at κ = 1, 2, 3 due to the Rayleigh anomalies (RA) of the± n-th index, which are the roots of
equations γn = 0, n = ±1,±2, . . . at cosβ = 0. At lower frequency values, one can see
the Fano-shape double extrema due to the resonances on the lattice modes of the± 1-st
and higher orders, respectively.

Figure 5(b) is a zoom of the vicinity of the 1-st RA. As visible, if the PEC strips are nar-
row (d < < p), then the reflectance is low however in the resonance on the lattice mode it
becomes total, in a narrow range. Still, for half-period and wider strips (d ≥ p/2), the reflec-
tion is high everywhere except of the vicinity of the lattice-mode resonance, where it drops
to a low value. Thus, a PEC-strip grating on a thin dielectric substrate is able to demon-
strate both extraordinary full-reflection and extraordinary full-transmission effects, in the
lattice-mode resonances.

These and other results presented below have been computed with truncation number
N = 50 that provide 8 or more correct digits in the reflectance at all studied frequencies.

To investigate the resonances on the lattice modes, we plot, in Figure 6, the curves of
the reflectance (11) as a function of the normalized frequency κ , for the H-polarized plane
wave, normally incident on a grating with equal strips and slots and two values of relative
dielectric permittivity, 2.2 (Teflon, Polyethylene) and 3.8 (fused quartz). The plot of the same
quantity for a grating without substrate (ε = 1) is also shown for comparison.

Sharp resonances slightly below the RA wavelengths at the normal incidence, are well
visible. However, they are absent if the dielectric slab is absent, i.e. PEC strip grating is
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Figure 5. The reflectance of the on-substrate grating versus the normalized frequency for h/p = 1/7,
ε = 2.25 (Teflon, Polyethylene), and three values of the filling factor, i.e. the strip-to-period ratio (a), and
the zoom of (a) in the marked interval near κ = 1 (b).

suspended in the free space. On the panels (b) and (c), we show the zooms of the vicinities
of the 1-st and the 2-nd RA, respectively.

At the frequencies, corresponding to the lattice resonances, we visualize the near field
patterns – see Figures 7 and 8. Here, as the resonances have Fano shapes, each pair of pat-
terns corresponds to the frequencies of themaximum (a) and theminimum (b) reflectance.
Therefore, on panels (a) one can see the standing wave created by the interference of the
incident plane wave and the strongly reflected wave (i.e. the 0-th Floquet harmonic) in the
upper half-space and deep shadow in the lower half-space. The slab is depicted usingwhite
dashes.

In the domain of slab, the lattice-mode contribution clearly dominates on both panels.
In Figure 7, there are two bright spots of the field on a period, while in Figure 8 there are six
spots. This indicates that the resonating modes are L1 and L3, respectively.

The standing-wave pattern, characteristic for the lattice modes, is created by the equal-
amplitude+ 1-st and −1-st Floquet harmonics, and+ 3-rd and −3-rd, respectively. This
happens because the mentioned harmonics are synchronized, in the resonance, with the
principal natural (guided) wave of the dielectric slab, in terms of the phase velocity (or the
natural-wave wavelength) along the x-axis.
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Figure 6. The same as in Figure 5 however, for d/p = 0.5, h/p = 1/7, and three values of the permit-
tivity, ε = 1, 2.25, and 3.8 (fused quartz) (a), and the zooms of (a) in themarked intervals near κ = 1 (b),
andκ = 2 (c).

It should be emphasized that the lattice or grating modes are attracting great atten-
tion today. This is because they are responsible for a number of amazing and sometimes
counter-intuitive phenomena, such as “anomalous” transmission and, reciprocally, reflec-
tion, and enhanced absorption in the case of lossy gratings, plus giant Kerr, Kerker, and
Faradayeffects [29–32]. Theexistenceof the latticemodes is causedby theperiodicity. Their
optical properties, for the strip andwire gratings in the visible-light wavelength rangewere
recently reviewed in [33]; another review, with emphasis on experimental measurements,
can be found in [34].
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Figure 7. Near magnetic field patterns on three periods of the PEC strip grating on top of dielectric
slab with ε = 2.25, in the maximum κ = 0.929 (a) and in the minimum κ = 0.966 (b) of reflectance,
corresponding to the Fano-shape resonance on the L1 mode, see Figure 6(b).

What is amazing, sharp lattice-mode resonanceswere first observed experimentally over
50 years ago when the “phased-array blindness effect” was discovered [35,36].

As already mentioned, the lattice modes, i.e. the poles of the field U as a function of
the normalized frequency, κ , and associated with them resonances are absent in the case
of zero-thickness PEC-strip grating in the free space, i.e. without finite-thickness dielectric
substrate. This is apparently the reason that the corresponding effects are sometimes called
“guided-mode resonances.” Still, as soon as the strips are assumed not PEC, the resonances
on the latticemodes emergenear to the Rayleigh anomalies as thedominant features in the
scattering and absorption [9,15,16,24,26,33]. The same happens if the strips have however
small but finite thickness.

Here, the existence of the natural guided waves of dielectric substrate or non-PEC plane
(such as graphene plane) plays the role of mediator. They shift the lattice-mode poles fur-
ther to the red from the RA values according to the wavelength of the natural wave, which
is always shorter than the free-space wavelength.

Finally, we present the results related to the inclined incidence of the plane H-polarized
wave on the PEC strip grating on top of a dielectric substrate layer, see Figure 9.

In this case, each Rayleigh anomaly splits to two anomalies+m-th and –m-th, according
to two separate roots of equations γn = 0, n = ±1,±2, . . . at cosβ �= 0. One of the RA, for
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Figure 8. The sameas Figure 7, however, for ε = 3.8 and the resonance on the L3 mode in themaximum
κ = 1.886 (a) and in the minimum κ = 1.902 (b) of the reflectance, see Figure 6(c).

positive n, obtains higher, in frequency, value, than at the normal incidence, and the other
RA, for negative n, obtains lower value. Each of the split RA is accompanied with its own
“satellite” in the form of the lattice-mode resonance of the same index. They have oppo-
site symmetry with respect to the center of the strip and therefore only one of them, on
the symmetric mode, is present at the normal incidence, while the other one, on the anti-
symmetric sister mode, is absent. In other words, the anti-symmetric lattice mode remains
“dark” at the normal incidence, while symmetric one is “bright.” At inclined incidence, both
lattice modes are bright.

These effects are especially well observable if the stripwidth-to-period ratio is close to
1 (see panel (a)) or to zero (see panel (b)). The resonances reveal themselves as sharp
and deep drops in reflection and even sharper peaks of reflection, respectively. This corre-
sponds to what is frequently called “anomalous transmission” and “anomalous reflection”
phenomena, respectively.

Conclusions

We have considered the H-polarized plane wave scattering by the infinite grating of zero-
thickness PEC strips on the top of dielectric substrate. Our full-wave treatment is based on
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Figure 9. The reflectance of the on-substrate grating versus the normalized frequency for h/p = 1/7
and ε = 2.25 in the case of the normal and inclined incidence, the values of the incidence angle β and
the filling factor d/p are indicated in the insets.

the analytical inversion of the problem static part with the aid of RHP technique. Conver-
gence of the resulting meshless numerical algorithm has been demonstrated and valida-
tion of the computed results has been performed by the comparison with data obtained
using another convergent technique,MAR-Galerkin. The computations have revealedhigh-
Q resonances on the lattice modes, which do not exist on the PEC-strip grating placed in
the free space. These resonances can take form of total reflection and total transmission,
depending on the strip width-to-period ratio.
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