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A mathematically accurate and numerically efficient method of analysis of a spherical reflector, fed
by a scalar beam produced by a complex source-point feed, is presented. Two cases, soft and hard
reflector surface, are considered. In each case the solution of the full-wave integral equation is
reduced to dual series equations and then further to a regularized infinite-matrix equation. The latter
procedure is based on the analytical inversion of the static part of the problem. Sample numerical
results for 50-l reflectors demonstrate features that escape a high-frequency asymptotic analysis.
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INTRODUCTION

Most frequently, performance of a reflector antenna
predicted by using asymptotic high-frequency techniq
such as Physical Optics~PO!, combined with Geometrica
Theory of Diffraction ~GTD!,1,2 for the off-beam radiation.
The Method-of-Moments~MoM! is also used in the integral
equation~IE! analysis of reflectors of small to moderate si
in terms of wavelength.3,4 The merits and limitations of both
approaches are well known. In spite of their flexibility, PO
GTD alone is not uniformly accurate with respect to the
rection in space, and both fail to characterize smaller refl
tors. MoM algorithms for the full-wave IE become comp
tationally expensive for larger reflectors, due to either la
matrices or a large time for filling the matrix. Besides, n
every MoM approximation scheme is convergent to the ex
result as the number of equations is increased, in the s
that the computation error cannot be progressively m
mized.

The feed field is normally simulated via a Gaussi
beam or a spherical-wave expansion multiplied with an
gular window function. Commonly it is neglected by the
simulations that such a feed field function does not solve
Helmholtz equation exactly, although the radiated or sc
tered field is found as a solution of the full-wave integ
equation. It has been proposed therefore to use the com
source-point~CSP! beam, or combination of such beams,
a feed field.5,6 Then, the latter is an exact solution to th
Helmholtz equation at every point in the physical obser
tion space. In Refs. 7, 8, this concept was combined with
and GTD for a characterization of a spherical-wave sca
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beam scattering from a circular aperture. This concept is
ther developed in Refs. 9, 10, which contain practical a
useful results.

In a recent study,11 it was demonstrated, for a 2D prob
lem, that a very accurate and computationally efficient ana
sis of reflector antennas can be achieved by using a com
nation of the CSP method to simulate a beam-like feed fie
and an analytical regularization based technique to solve
reflector scattering. In Ref. 11, a circular-cylindrical reflect
fed by the CSP-type line sources was considered. First,
IE was discretized into the dual series equations~DSE! in
terms of the entire-period angular exponents. Then, the s
part of DSE was analytically inverted, using the Rieman
Hilbert Problem solution, resulting in an infinite matrix Fre
holm equation of the second kind. A remarkable feature
this equation is that it can be solved numerically with a gu
anteed accuracy and small CPU time expenditures.

Our present study is similar to Ref. 11, but deals with
quasi-3D problem of a spherical reflector. Acoustic reflect
of this type have been analyzed in Refs. 12, 13 assum
finite transparency of reflector material and tapered spher
wave illumination. Unlike Refs. 12, 13, we characterize t
feed by a scalar CSP beam, assume the reflector to be
fectly hard or soft, and develop a numerically exact soluti
It is obtained from the DSE in terms of Legendre polynom
als, with the static part inversion based on the Abel integ
equation technique.14,15 This solution is equivalent to a judi
cious choice of the expansion functions in an MoM proc
dure, forming a set of the orthogonal eigenfunctions of
static limit of the IE kernel. The usage of a directive CS
field as a feed brings new features, hence we believe tha
in-depth physical analysis of two scalar problems of soft a
hard reflectors is reasonable. To obtain the results which
applicable to paraboloidal reflectors as well, we restrict
computed examples to ‘‘dish’’ reflectors with a large to mo
29997(6)/2999/7/$17.00 © 2000 Acoustical Society of America



I
n

Fu
w
n
n
IV
d
ica
m
te
d

tl

is

la

-

n
he

-

ial

on
un-
red

it
he

ials

(
t

ion

lds
of
eratef /d ratio @ f andd being the Geometrical Optics~GO!

focal distance and the dish diameter, respectively#.
The remainder of the paper is organized as follows.

Sec. I, we formulate the boundary-value problem for soft a
hard reflectors, and derive a rigorous IE for each case.
ther we discretize and convert it to the DSE. In Sec. II,
present basic points of the partial inversion of the DSE a
reduction to the regularized matrix equation. Section III co
tains the formulas for far field characteristics. Section
presents the results of numerical analysis concerning ra
tion patterns and the directivity of the soft and hard spher
reflectors. Conclusions of the presented work are sum
rized in Sec. V. Focal shifts in parabolic reflectors. A no
should be made that the time dependence is assume
e2 ivt and is omitted.

I. FORMULATION AND BASIC EQUATIONS

A. Problem formulation

Consider a zero-thickness, perfectly soft or perfec
hard, spherical reflector of radiusa and angular width 2u0 ,
symmetrically excited by the field of a CSP beam. That
the feed is located at the point (r s,0,0) with the radial source
coordinate being a complex value:r s5r 01 ib. The geom-
etry of the problem is shown in Fig. 1. The incident sca
wave field is:

U0~r ,u!5eikR/R, ~1!

where R5(r 222rr s cosu1rs
2)1/2, and k5v/c is the real-

valued free-space wave number (c being the sound propaga
tion velocity!. The scattered fieldUsc(r ,u) is the solution of
a boundary-value problem for the 3D Helmholtz equatio
with the boundary condition of either soft or hard type at t
reflector surfaceM: (r 5a,0<u,u0,0<w<2p)

U01UscuM50,
]~U01Usc!

]r U
M

50. ~2!

The formulation must also include~i! the edge condition
Usc;O(r1/2), ]Usc/]r;O(r21/2), wherer→0 is the dis-
tance from the dish rim, and~ii ! the outgoing radiation con
dition at r→`, to ensure the solution uniqueness.16

B. Acoustically soft reflector

Consider first the case of a perfectly soft reflector. W
seek the scattered field function as a single-layer potent

FIG. 1. Geometry of a spherical reflector fed by a CSP feed.
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Usc~r !52
1

4pE E
M

j s~u8,w8!
eikur2r8u

ur2r 8u
dS8, ~3!

where ur2r 8u5$r 21a222ra@cosu8 cosu1sinu8 sinu
3cos(w2w8)#%1/2 is the distance between the observati
point and a point at the reflector surface. Note that the
known density function is related to the jump of the scatte
field normal derivative across the reflector as

j s~u8,w8!5
]Usc

]r U
r 5a10

2
]Usc

]r U
r 5a20

. ~4!

The soft-surface boundary condition Eq.~2! then yields
a Fredholm first kind IE as

a

8pE0

u0E
0

2p

j s~u8,w8!
ei2kausin(c/2)u

usin~c/2!u
sinu8 du8 dw8

5U0~a,u,w!, ~5!

wherec5arccos@cosu8 cosu1sinu8 sinu cos(w2w8)#.
Instead of approximating IE Eq.~5! by MoM with sub-

domain orM-domain basis functions, we further discretize
in terms of a complete set of orthogonal functions in t
global domain 0<u<p. In our case of aw-independent
solution, such a set is formed by the Legendre polynom
Pn(cosu) (n50,1,2, . . . ). Byextending the density function
to be identically by zero on the complementary surfacer
5a,u0,u<p), as is natural due to Eq.~4!, we assume tha
for all u8

j s~u8!52
1

ka2 (
n50

`

xn
s~2n11!Pn~cosu8!, ~6!

with the expansion coefficientsxn
s , n50,1,2, . . . to be

found.
Besides, it is known that the free-space Green’s funct

can be expanded as:15

eikur2r8u

ur2r 8u
5 ik (

m50

`

~22d0m!cosm~w2w8!

3 (
n5m

`

~2n11!
~n2m!!

~n1m!!

3H hn
(1)~ka! j n~kr !, r ,a

j n~ka!hn
(1)~kr !, r .aJ

3Pn
m~cosu!Pn

m~cosu8!, ~7!

wherePn
m are the associated Legendre functions. This yie

the following series representation of the kernel function
the IE Eq.~5!:

ei2kausin(c/2)u

usin~c/2!u
5 i2ka(

m50

`

~22d0m!cosm~w2w8!

3 (
n5m

`

~2n11!
~n2m!!

~n1m!!
j n~ka!hn

(1)~ka!

3Pn
m~cosu!Pn

m~cosu8!. ~8!
3000radov et al.: Acoustic beam illumination of a spherical reflector
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Now the integration in Eq.~5! over u8 can be extended
from 0 to p. This enables us to use orthogonality of t
spherical harmonics

E
0

2p

cosm~w2w8!E
0

p

Ps~cosu8!Pn~cosu8!sinu8du8dw8

5
4p~s1m!!

~2n11!)~s2m!!
dnsdm0 ~9!

when discretizing the IE. Together with the specification t
the density function Eq.~6! is zero off the reflector, this
brings us to the dual series equations~DSE!:

(
n50

`

xn
s~2n11! j n~ka!hn

(1)~ka!Pn~cosu!

5 (
n50

`

bn
sPn~cosu!, 0<u,u0 ,

~10!

(
n50

`

xn
s~2n11!Pn~cosu!50, u0,u<p,

where the right-hand side coefficients are determined by
CSP feed field as

bn
s5~2n11! j n~krs!hn

(1)~ka!. ~11!

Once again, the DSE Eq.~10! can be attacked by a ’’brute
force’’ numerical solution with a direct MoM scheme. A
though the results are generally meaningful, only a few c
rect digits can be obtained, and there is no possibility
increasing accuracy by taking a greater number of collo
tion points. That is our motivation for regularizing the DS
Eq. ~10!, to obtain an algorithm convergent to the exact s
lution in a pointwise manner.

C. Acoustically hard reflector

For a perfectly hard spherical reflector fed by a C
feed, we seek the scattered field function as a double-la
potential:

Usc~r !52
1

4pE E
M

j h~u8,w8!
]

]r 8
H eikur2r8u

ur2r 8u
J dS8,

~12!

where thew-independent density function is now related
the jump of the field across the reflector surface:

j h~u8!5Usc~a10,u8!2Usc~a20,u8!. ~13!

The hard-surface boundary condition Eq.~2! now yields
a hypersingular IE for this function:

a2

4p

]

]r E0

u0E
0

2p

j h~u8,w8!
]

]r 8
H eikur2r8u

ur2r 8u
J sinu8 du8 dw8

5
]

]r
U0~r ,u!. ~14!

In order to discretize the IE Eq.~14!, we assume that the
density function is extended, so that it is identically zero
the rest of the sphere of radiusa; we expand the density
3001 J. Acoust. Soc. Am., Vol. 107, No. 6, June 2000 Vinog
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function in terms of the same complete set of Legendre po
nomials as were used in the ‘‘soft case’’:

j h~u8!5
1

k2a
(
n50

`

xn
hPn~cosu8!. ~15!

We substitute this series into the IE Eq.~14! and inte-
grate, making use of the orthogonality properties Eq.~9!.
Moreover, we explicitly enforce the vanishing ofj h(u8) off
the reflector surface, and so arrive at the DSE as

(
n50

`

xn
hj n8~ka!hn

(1)8~ka!Pn~cosu!52 (
n50

`

bn
hPn~cosu!,

0<u,u0 ,
~16!

(
n50

`

xn
hPn~cosu!50, u0,u<p,

where

bn
h5 j n~krs!hn

(1)8~ka!. ~17!

Note that the DSE so obtained are of the same type a
the case of the soft reflector.

II. PARTIAL INVERSION OF DSE

We shall regularize Eqs.~10! and~16! by performing an
analytical inversion of the static part of the DSE. To extra
the static parts, use the power series for the spherical Be
functions,17 from which it follows that:

j n~ka!5
n! ~2ka!n

~2n11!! H 11OS k2a2

n D J ,

~18!

hn
(1)~ka!52 i

~2n!!

n! ~2ka!n11 H 11OS k2a2

n D J .

This enables us to show that ifn@ka, then

~2n11! j n~ka!hn
(1)~ka!;2 i /~ka!,

~19!
~2n11!21 j n8~ka!hn

(1)8~ka!; i /~4k3a3!.

Based on these estimates, we introduce two coefficient
as

«n
s512 ika~2n11! j n~ka!hn

(1)~ka!,
~20!

«n
h511 i4~ka!3~2n11!21 j n8~ka!hn

(1)8~ka!.

Note that all «n
s behave asO(k2a2n22) for larger n, or,

equivalently, for smallerka, while «n
h behave as (2n

11)22. The DSE may be written as

(
n50

`

xn
sPn~cosu!5 (

n50

`

~«n
sxn

s2 ikabn
s!Pn~cosu!,

0<u,u0 ,
~21!

(
n50

`

~2n11!xn
sPn~cosu!50, u0,u<p,

and
3001radov et al.: Acoustic beam illumination of a spherical reflector
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(
n50

`

~2n11!xn
hPn~cosu!

5 (
n50

`

~2n11!~xn
h«n

h1 i4k3a3bn
h!Pn~cosu!,

0<u,u0 ,
~22!

(
n50

`

xn
hPn~cosu!50, u0,u<p.

Analytical inversion of the left-hand side the DSE
performed by transforming it to a single function, defined
the complete interval@0,p# of u variation. This is done by
reducing each of the functional equations of the DSE to
Abel IE ~see Refs. 12, 13!, which has a known inversion
formula. Here we use the Mehler–Dirichlet formulas for t
Legendre polynomials:

Pn~cosu!5E
0

u cos~n11/2!g

~cosg2cosu!1/2
dg

5E
u

p sin~n11/2!g

~cosu2cosg!1/2
dg . ~23!

This enables us to integrate the second equation of E
~21! and the first of Eqs.~22!, and reduce each of the DSE
the same function ofu, given by its piecewise Fourier
expansion on@0,p#:

(
n50

`

xn
s cos~n11/2!u

5H (
n50

`

~xn
s«n

s1Bn
s!cos~n11/2!u, 0<u,u0

0, u0,u<p

, ~24!

(
n50

`

xn
h sin~n11/2!u

5H (
n50

`

~xn
h«n

h1Bn
h!sin~n11/2!u, 0<u,u0

0, u0,u<p

. ~25!

Here we have denoted

Bn
s52 ikabn

s , Bn
h5 i4~ka!3bn

h . ~26!

Using orthogonality and completeness of the functio
cos(n11/2)u or sin(n11/2)u, n5(0),1,2, . . . at theinterval
(0,p), produces a regularized infinite-matrix equation:

xm
h,s5

1

p (
n50

`

~xn
h,s«n

h,s1Bn
h,s!Smn

s,h~u0!, m50,1,2, . . . ,

~27!

where

Smn
s,h~u0!5

sin~n2m!u0

n2m
6

sin~n1m11!u0

n1m11
~28!
3002 J. Acoust. Soc. Am., Vol. 107, No. 6, June 2000 Vinog
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with the upper and lower sign for the soft and hard ca
respectively.

Taking account of the large-index behavior of«n
s or «n

h ,
it is easy to verify that the absolute squared normNA

2

5(m,n50
` u«n

s,h(ka)Smn
s,h(u0)u2<const(n50

` u«n
s,hu2 is finite.

This is enough to conclude that the matrix operator of E
~27! is of Fredholm second kind type in the space of t
square summable sequencesl 2. Besides, the right-hand sid
of Eq. ~27! belongs tol 2, provided thatur su,a, or, more
precisely, if the real-space branch-cut associated with
CSP feed~see Refs. 5–8! does not touch or cross the refle
tor. Under such a condition, the Fredholm theorems
valid:16 due to uniqueness, the exact solution of the infini
matrix equation~27! exists inl 2. Moreover, it can be shown
that the solution satisfies the edge condition: without go
into details we point out the connection with the square-r
denominators in the integrands of Eq.~23!. For computa-
tional purposes the most important consequence of the r
larization procedure is that, the greater the truncation or
of Eq. ~27!, the closer the numerical solution will be to th
exact one. The convergence here is of pointwise-type, no
mean-type, or of some other ‘‘weak’’ form. Note that th
matrix elements are remarkably simple, and need no num
cal integrations. Ifk50, all the coefficients«n

s vanish, show-
ing that in the static case Eq.~27! delivers an exact analytica
solution. In the case of the hard boundary condition,«n

h

5(2n11)22 in the limit k→0. This means that by introduc
ing new coefficients«̃n

h5«n
h2(2n11)22, one can also ob-

tain an exact analytical solution of the static-counterpart
the hard-surface problem. However, as spherical reflec
are normally used withka@1, such a procedure is not nec
essary in our analysis.

III. FAR FIELD CHARACTERISTICS

After determining the coefficientsxn
s,h from Eq. ~27!,

one can easily find, with the same guaranteed accuracy
density function, the far field pattern, the total radiat
power, and the directivity~which, in our lossless analysis, i
the same as gain!. All of these functions and parameters a
expressed in terms of series depending onxn

s,h . For example,
the far field pattern is found as

Cs,h~u!5ek(b2 ir 0)cosu1 (
n50

`

~2 i !nwn
s,hyn

s,hPn~cosu!,

~29!

where we denoteyn
s5 j n(ka)xn

s , yn
h5 j n8(ka)xn

h , and wn
s

52n11, wn
h51.

Due to completeness and orthogonality of the expans
functions on the unit sphere, integration of the time-avera
far-zone power flux is performed analytically, yielding

Ptot
s 5P01P0

2kb

sinh 2kb

3 (
n50

`

~2n11!$uyn
su212 Re@yn

s j n~krs!#%, ~30!
3002radov et al.: Acoustic beam illumination of a spherical reflector
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Ptot
h 5P01P0

2kb

sinh 2kb (
n50

`

$~2n11!21uyn
hu2

12 Re@yn
hj n~krs!#%. ~31!

The directivity is

D tot
s,h5

4p

k2Ptot
s,hUeikr s1 (

n50

`

i nyn
s,hwn

s,hU2

. ~32!

Note that the free-space radiated power and the f
space directivity of the same CSP feed are given, resp
tively, by the expressions:

P05
2p

k2

sinh 2kb

kb
, D05

2kbe2kb

sinh 2kb
. ~33!

Overall directivityD tot should be compared withD0 .

IV. NUMERICAL RESULTS

In principle, the accuracy in solving Eq.~27! is limited
only by the digital precision of the computer used, in contr
to the conventional MoM-type numerical approximatio
~e.g., Refs. 3, 4!. For an accuracy in the far field of thre
digits, and in the near field of two digits, the number
equations to be taken isNtr>ka120 independently of the
angular width 2u0 , and of the feed parameters. This estim
is illustrated by the plots of normalized error of comput
density function versus truncation number, presented in
2 ~for the hard-surface case!. The error is computed in the
maximum-norm sense:

e~N!5
maxn<Nuxn

N112xn
Nu

maxn<Nuxn
Nu

. ~34!

However, the error computed in thel 2 sense shows very
similar behavior. It should be recalled that the Fredholm
ture of Eq. ~26! guarantees thate(N)→0 as N→`. CPU

FIG. 2. Normalized computation error as a function of the matrix trunca
number, for a hard-surface reflectoru0530°.
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e-
c-

t

e

g.

-

time needed for solving a 50-l reflector of angular halfwidth
u0515°, that iska5620, with a Pentium 133 computer an
Fortran 77 source-code under Windows 3.11 was 2.5 mi

We present some further results on the dependenc
overall directivity on the feed location in real space. W
examine twod550l hard-surface reflectors: a ‘‘shallow
dish’’ (u0515°, or f /d50.97) and a ‘‘deep’’ one (u0

530°, or f /d50.5). The spherical reflector is believed
behave as a paraboloidal one, provided that the geomet
deviation between the two surfaces does not exceedl/16 ~or
even l/8).1 Despite the paper titles, this is why spheric
reflectors were considered in Refs. 12, 13. According to F
2 of Ref. 11, this limits the aperture size of our ‘‘shallo
dish’’ to the valued553.5l. Of course, even deeper o
larger reflectors can still be considered~there is no compu-
tational difficulty!, but spherical aberrations are known
degrade the main beam. This happens in the case of
‘‘deep’’ reflector. However, such spherical reflectors rema
of interest, due to easier manufacturing and mechanical b
steering.

Only an infinite paraboloid generates a plane wave
the point feed is placed at the GO focus:r 0 /a50.5. In any
finite-size geometry a focal shift occurs, predicted by GO18

and studied in Ref. 19 by using PO. However in reality, fo
finite d, the dependence ofD tot on q5r 0 /a has an even more
complex and oscillatory nature. In Fig. 3 is presented
hard ‘‘shallow’’ reflector under two edge illuminations
210 dB ~the same for allq, solid curve! and 0 dB~omnidi-
rectional source, dashed curve!. In the former case, the pa
rameterkb was slightly varied around the value 8.2 to pr
vide a constant illumination level. One may clearly see t
there is not a single, but several positions of the feed prov
ing almost equally good directivity. The broad maximu
corresponds to the focal shift predicted by GO:19 it is be-
tween r 0 /a50.5 andr 0 /a5secu0/2, that is r 0 /a5 0.518

n
FIG. 3. Directivity of a hard-surface ‘‘shallow’’ reflector as a function o
the normalized feed position. Solid curve is for the edge illumination210
dB, dashed curve is for nondirective source (kb50). Reflector parameters
are:d550l, f /d50.97 (ka5606.9,u0515°).
3003radov et al.: Acoustic beam illumination of a spherical reflector
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here. The period of the smaller oscillations is equal tol/2.
This feature of the near field is clearly not of GO nature, a
does not appear to be predicted by high-freque
asymptotic approximations. In Fig. 4, we present total
field radiation patterns, computed for three different ed
illuminations. Note that reduction of the edge illuminatio
levels from25 dB to210 dB ~that is, increasing the beam
width parameterkb, from 4 to 8.4! mainly affects the far
sidelobes, between 30° and 90°. The feed position here
responds to the optimum.

The next series of results illustrates features of
‘‘deep’’ reflector. In this case, the spherical shape of
latter has a greater effect. The directivity dependence on
feed position~Fig. 5! shows a broad maximum in the midd

FIG. 4. Normalized far field radiation patterns of the same ‘‘shallow’’ r
flector as in Fig. 3, for the feed positionr 0 /a50.507. Edge illuminations
are:210 dB ~solid curve!, 25 dB ~dashed curve!, and non-directive source
~dotted curve!.

FIG. 5. Directivity of a hard-surface ‘‘deep’’ reflector as a function of t
normalized feed position. Edge illuminations are:210 dB ~solid curve!,
25 dB ~dashed curve!, and nondirective source~dotted curve!. Reflector
parameters are:d550l, f /d50.5 (ka5314.2,u0530°).
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of GO-predicted interval, betweenr 0 /a50.5 and 0.578, but
no oscillations. Note that the maximum directivity for th
omnidirectional feed is double that of the ‘‘shallow’’ reflec
tor case~compare with Fig. 3!, due to doubling the area o
reflector. However, the directivity in this case is much mo
critically dependent on the feed position, the GO focus be
completely unacceptable. Far field patterns presented in
6 are more sensitive to the decrease of edge illumina
levels from 25 dB to 210 dB ~by increasing the beam
width parameterkb, from 0.8 to 2.1!, and show the effect of
spherical aberrations, not visible in Fig. 4.

Most of these features are observed for the soft reflec
as well: see Figs. 7 and 8. Similarly for the hard reflect

FIG. 6. Normalized far field radiation patterns of the same ‘‘deep’’ reflec
as in Fig. 5, for the feed positionr 0 /a50.526. Edge illuminations are
210 dB ~solid curve!, 25 dB ~dashed curve!, and nondirective source
~dotted curve!.

FIG. 7. Directivity of a soft-surface ‘‘shallow’’ reflector as a function of th
normalized feed position. Edge illuminations are:210 dB~solid curve!, and
nondirective source~dotted curve!. Reflector parameters are:d520l, f /d
50.97 (ka5242.8,u0515°).
3004radov et al.: Acoustic beam illumination of a spherical reflector
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decreasing the edge illumination below25 dB has a small
effect on the overall directivity. As expected, a soft-surfa
edge produces smaller sidelobes than a hard-surface on

V. CONCLUSIONS

We have presented a simple but powerful algorithm
the analysis of spherical reflector antennas fed by a sc
beam. It is based on the exact analytical inversion of
singular part of the corresponding full-wave integral equ
tion. This is achieved through the conversion of the probl
to dual series equations, and followed by the Abel integ
transform to invert the static part~in the soft case!, or the
‘‘main’’ part ~in the hard case!. The resulting infinite matrix
equations are of Fredholm second kind, thus ensuring e
tence of the exact solution, and the opportunity of obtain
it within machine precision, by taking more and more equ
tions. This approach was previously used in plane-wave s
tering analysis; here, it is combined with a complex sour
point simulation of a directive feed field employing
function which is an exact solution to the Helmholtz equ
tion. The analytical regularization approach described ab
can be considered numerically exact because the achiev
accuracy is limited only by the computer used, and is u
form with respect to the frequency and the other paramet

Accurate numerical analysis of the considered probl
reveals several interesting features of the wave field tha
not seem to be predicted by asymptotic techniques. For
ample, besides the well-known focal shift toward the refl
tor, the directivity ~as a function of the feed position! dis-
plays not a single, but several, local maxima near the G
predicted shifted focal point. Generally, optimization
antenna geometry depends on the cost functional. Maxim

FIG. 8. Normalized far field radiation patterns of the same reflector a
Fig. 7, for the feed positionr 0 /a50.504. Edge illuminations are:210 dB
~solid curve!, 25 dB ~dashed curve!, and nondirective source~dotted
curve!.
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directivity is a possible choice of cost functional, but min
mum sidelobe level is another, or a combination of both
also reasonable. Potential applications of the analysis
sented are in the area of hydro-acoustic antenna design

One possible extension of this analysis is to parabolic
other nonspherical reflectors. Here, an IE, similar to Eq.~5!
or ~14!, will require a modified domain of integration. How
ever, analytical regularization of this IE can be based up
the extraction and inversion of the singular static part of
spherical dish IE operator. Hence, the technique prese
above will be at the core of the modified analysis.
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