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ABSTRACT

We consider the scattering of an H-polarized plane wave by an infinite dielectric rod with a conformal graphene strip of arbitrary angular
width, placed at the rod rear side. Our analysis is based on the hypersingular integral equation for the current induced on the strip.
Discretization of this equation is carried out by the Nystrom-type method, which has a guaranteed convergence. This meshless trusted com-
putational instrument enables us to plot the dependences of the absorption cross section and the total scattering cross section on the strip
angular width and the frequency, in a wide range from 1 GHz to 6 THz. We concentrate our analysis on studying the interplay between the
broadband photonic-jet effect of the dielectric rod and the reasonably high-Q resonances on the plasmon modes of the graphene strip. It is
found that as the photonic jet becomes brighter with higher frequencies, the plasmon-mode resonances become more intensive as well.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5093674

I. INTRODUCTION

A circular dielectric rod is known to produce a specific near-field
effect called a “photonic jet” provided that its relative dielectric
permittivity is less than 4, and the rod radius is at least twice
larger than the wavelength.1,2 The larger the radius, the nar-
rower and brighter the photonic jet. This is, in fact, a sort of an
imperfect focusing effect, nonresonant and, therefore, explained
by the geometrical optics for optically large rods, although for
mesoscale ones diffraction is also essential, according to Ref. 3.
Note that this imperfect focusing can be improved by making
the circular rod “discrete,” i.e., concentrically layered, with step-
wise dielectric permittivity mimicking the Luneburg lens.
Photonic jets on various dielectric scatterers were reported in
Refs. 4–7. On the other hand, a strip made of graphene is able
to support plasmon modes in the infrared and THz ranges of
frequencies.8–10 If such a strip is placed into the photonic-jet
area, one can expect that two effects can be combined, thus
increasing the amplitude of the field in the vicinity of the rod
without increasing its radius.

Guided by these considerations, we are going to analyze the
scattering and absorption of a THz range H-polarized plane wave
by a circular dielectric rod with a graphene strip located at the rear
side of rod—see Fig. 1.

For solving this problem, we combine the Maxwell boundary-
value problem with the Kubo model of graphene conductivity. Here,
we consider the graphene as a zero-thickness layer with a complex
surface electron conductivity defined by the chemical potential, fre-
quency, temperature, and relaxation time.11 Note that the thickness of
the graphene monolayer or a small stack of them is so small, 1–2 nm,
that the assumption of zero thickness is perfectly valid even in the
X-ray range. The famous hexagonal honeycomb fine in-plane struc-
ture of graphene has a characteristic size of 10 nm and hence graphe-
ne’s surface conductivity can be safely considered isotropic in the THz
and even in the visible range. Nonlocal effects in the conductivity can
be neglected if the size of graphene samples is larger than 100 nm.

Graphene strips have already attracted attention in the THz
science community as attractive and easily manufactured components
of plasmonic waveguides, antennas, and sensors.12–14 Apart from
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commercial codes, their modeling has been done with several conver-
gent methods: regularizing method-of-moments, the Riemann-Hilbert
Problem (RHP) method, and Nystrom-type discretization with
Chebyshev quadratures.15–21 Application of these mathemati-
cally grounded methods allows finding the solutions to the con-
sidered problems with controlled accuracy within a reasonable
time of computation.

Single flat strip scattering was studied in Refs. 8–10 and its wave-
guiding properties in Ref. 15. Plasmon-assisted resonances in the
scattering and absorption by infinite and finite gratings of coplanar
graphene strips under normal and inclined incidence were analyzed
in Refs. 15–19 Focusing ability of a parabolic graphene reflector in
the free space was considered in Ref. 20. Still most frequently gra-
phene is placed on top of the dielectric layer, which provides better
mechanical rigidity. Such a combination of graphene with dielectric
objects results in the interplay between the resonances associated with
each part of the whole configuration. This, for instance, was demon-
strated in Ref. 21 where the THz wave scattering and absorption by a
graphene strip grating embedded into a dielectric slab was analyzed
with the aid of regularizing method-of-moments. Curved graphene-
dielectric configurations studied so far have been mainly restricted to
fully covered circular dielectric rods.22–25 The arbitrary dielectric rod,
fully covered with graphene, was analyzed with boundary integral
equation in Ref. 26 The authors of Ref. 27 considered a finite-width
graphene strip attached to the surface of the arbitrary dielectric rod
using quasi-static approximations. In our work, we build on the pre-
liminary studies presented in the conference papers.28,29

The remaining part of the paper is organized as follows. In
Sec. II, we reduce the problem to a dual-series equation and then
to a hypersingular integral equation, which is discretized in Sec. III.
In Sec. IV, we obtain an approximate formula for the resonance
values of the graphene strip angular width as a function of the fre-
quency and rod’s parameters. In Sec. V, we present numerical
results and discuss them. Section VI contains the conclusions.

II. DERIVATION OF HYPERSINGULAR INTEGRAL
EQUATION

Consider the H-polarized time-harmonic (e�iωt) plane wave
incident on a circular dielectric cylinder (rod), the outer boundary
of which is partially covered with a conformal strip of graphene
placed symmetrically to the incident wave propagation direction.
The cross section of such a scatterer by the coordinate plane z ¼ 0
is presented in Fig. 1, where the cylindrical coordinates (r, w, z) are

co-axial with the rod. Here, R is the radius of the rod and 2δ is the
angular width of the graphene strip, so that 2θ ¼ 2π � 2δ is the
angular width of the slot. The Н-polarized field has electromagnetic
field components of (Er , Ef, 0) and (0, 0, Hz).

As the Hz field does not depend on z, we obtain the fol-
lowing two-dimensional find the function Hz(r, f), which
satisfies (i) the Helmholtz equation with the wavenumber kI,II

for all r = R,

ΔHz(r, f)þ (kI,II)
2Hz(r, f) ¼ 0, (1)

(ii) the dual boundary condition at r ¼ R: on the graphene
arc, L ¼ {r ¼ R, jfj � δ}, this is

EI
f þ EII

f ¼ 2ZZ0(H
I
z �HII

z ) and EI
f ¼ EII

f , (2)

while on the slot arc, S ¼ {r ¼ R, jf� πj � θ}, this is

HI
z ¼ HII

z and EI
f ¼ EII

f , (3)

(iii) the Sommerfeld radiation condition at infinity, and (iv)
the local power finiteness.

Here, ZZ0 ¼ 1=σ is the graphene surface impedance, σ is the
surface conductivity, Z0 is the impedance of the free space, index I
(II) is assigned to the inside (outside) domain filled in with a
dielectric of the permittivity εI(εII) and kI,II ¼ (ω=c)

ffiffiffiffiffiffiffiffi
εI,II

p
, where c

is the speed of light in vacuum.
The given incident wave, Hinc

z ¼ eikII x , propagates along the
positive direction of the x axis. The total field can be presented as
the Fourier series,

H(I,II)
z ¼ Hinc

z þPþ1
�1CII,nHn(kIIr)einw=H0

n(kIIR), r � R,Pþ1
�1 CI,nJn(kIr)einw=J 0n(kIR), r , R:

(
(4)

Here, Jn(ζ) and Hn(ζ) are the Bessel and Hankel first kind
functions of integer order n, prime means a derivative of the func-
tions, and C(I,II),n is unknown coefficients, which should be found.
Such a field satisfies the Helmholtz equation and the radiation
condition.

Using the boundary conditions (2) and (3) at r ¼ R, we derive
the following dual series equation:

Pþ1
n¼�1AnWneinw � iZ

Pþ1
n¼�1Aneinw ¼ f (w), jwj, δ,Pþ1

n¼�1Aneinw ¼ 0, δ � jwj � π:

(
(5)

The field expansion coefficients in (4) depend on An as

CI,n ¼ ffiffiffiffi
εI

p
Wn(An � inJ 0nHn=H

0
n þ inJn),

CII,n ¼ ffiffiffiffiffiffi
εII

p
Wn(An � inJ 0nHn=H

0
n þ inJn)� inJ 0n,

(6)

Wn ¼ ffiffiffiffi
εI

p
Jn(J

0
n)

�1 � ffiffiffiffiffiffi
εII

p
Hn(H

0
n)

�1
h i�1

, (7)

FIG. 1. Cross section of a circular dielectric rod with a partial graphene cover.
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and the right-hand part function is

f (w)¼
X1

n¼�1 inJ 0nHn(H
0
n)

�1Wne
inw �

X1
n¼�1 inJnWne

inw: (8)

Introduce the function

v(w) ¼
Xþ1

n¼�1 Ane
inw: (9)

From the bottom line of (5), we can find that v(w) ¼ 0, hence

An ¼ (2π)�1
ðδ
�δ

v(w)e�inwdw, n ¼ 0, + 1, + 2, . . .: (10)

Then, with the aid of parametric representations28 of the integral
operators with the hyper-singular and logarithmic kernels, we obtain
from the top line of (5) an integral equation over the interval (�δ, δ)

� B1

2π
h:f :p:

ðδ
�δ

v(ψ)
2sin2[(ψ � w)=2]

dψ

� �

� B2π
�1

ðδ
�δ

v(ψ) ln sin
ψ � w

2

��� ���dψ
þW0 � 2B2 ln 2

2π

ðδ
�δ

v(ψ)dψ ,

� π�1
ðδ
δ
K(ψ , w)v(ψ)dψ � iZv(w) ¼ f (w), (11)

where h.f.p. denotes Hadamard’s finite part

K(ψ , w) ¼
X1
n¼1

(Wn � B1jnj � B2jnj�1) cos n(w� ψ), (12)

B1 ¼ 1=kR(εI þ εII), B2 ¼ �1
2
kR(ε2I þ ε2II)(εI þ εII)

�2: (13)

Further, on introducing new notations f (w) ¼ f (t0), where
jwj , δ and t0 ¼ w=δ, and also t ¼ ψ=δ, we transform this integral
equation into the equation over the standard interval (�1, 1),

� iZγ(t0)δ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� t20

q
� B1

π
h:f :p:

ð1
�1

γ(t)

ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p

(t � t0)
2 dt

0
@

1
A

� B2δ
2π�1

ð1
�1

γ(t) ln jt � t0j
ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p
dt

þ δ2π�1
ð1
�1

γ(t)
ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p
K(t0, t)dt ¼ f (t0), (14)

with a smooth kernel K(t, t0) ¼
P1
n¼1

(Wn � B1jnj � B2jnj�1)

cos[nδ(t � t0)]. Note that the local power finiteness condition is
fulfilled at the strip edges as the function v(ψ), which is the electric

current on the graphene strip, has the form v(t) ¼ δγ(t)(1� t2)1=2,
where the function γ(t) remains finite at the strip edges, i.e., if
t ! +1.

III. DISCRETIZATION AND CONVERGENCE

In the discretization of the integral equation (14), the
unknown function γ(t) is substituted with the interpolating poly-
nomial γN�1(t), and the integrals within the equation are replaced
with interpolation quadrature formulas.30 Here, the equation
kernels should also be replaced with their interpolating polynomials
having the same nodes, which are the zeros of the Chebyshev
second kind polynomials, t0p,

iZδγN�1(t0q)(1� (t0q)
2)þ B1

N þ 1

XN
p¼1
p=q

γN�1(t0p)(1� (t0p)
2)
1� (�1)qþp

(t0q � t0p)
2 � B1

(N þ 1)γN�1(t0q)

2
� B2

N þ 1
δ2

XN
p¼1

γN�2(t0p)[1� (t0p)
2]

� ln 2þ 2
XN
s¼1

Ts(t0p)Ts(t0q)=sþ (�1) pþq=(2N þ 2)

" #
� 2δ2=(N þ 1)

XN
p¼1

γ(t0p)(1� (t0p)
2)K(t0q, t0p) ¼ �f (t0q), q ¼ 1, . . . , N: (15)

Denoting xq ¼ γN�1(t0q), we rewrite this set as

Zqxq þ
XN
p¼1

Aqpxp ¼ bq, q ¼ 1, . . . , N , (16)

where bq ¼ �f (t0q), Zq ¼ iδZ(1� t20q) are known, and the elements of the matrix take the form

Aqq ¼
(
�1
2
B1(N þ 1)2 � B2δ

2[1� (t0q)
2]� ln 2þ 2

XN
s¼1

Ts(t0q)Ts(t0q)=sþ (�1)2q=(2N þ 2)

" #
�2δ2(1� t20q)K(t0q, t0q)

)
=(N þ 1), (17)

Aqp ¼
(
B1[1� (t0p)

2]
1� (�1)qþp

(t0q � t0p)
2 � B2δ

2[1� (t0p)
2]� ln 2þ 2

XN
s¼1

Ts(t0p)Ts(t0q)=sþ (�1) pþq=(2N þ 2)

" #

� 2δ2[1� (t0p)
2]K(t0q, t0p)

)
=(N þ 1) if q = p, (18)
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where Ts(t0q) stands for the Chebyshev polynomial of the first kind
of the order s.

The obtained matrix equation has strong diagonal predomi-
nance. The convergence of the solution of (16) with N→∞ is
guaranteed by the theorems of approximation of hypersingular
operators with the aid of quadratures.30 The validation of the
constructed algorithm has been performed by the comparison
with RHP method results available in Ref. 31 for the limit case
of ε = 1 and Z = const. As both methods are convergent, the
agreement is within an arbitrary number of digits, controlled by
the order of discretization.

IV. GRAPHENE CONDUCTIVITY AND PLASMON
RESONANCES

Today, the most widely recognized model of the electromag-
netic properties of graphene monolayer is the Kubo formalism.11

It tells that the graphene surface conductivity is a sum of the
intraband and interband terms, σ(ω) ¼ σ intra þ σ inter, where the
second term heavily dominates from the statics to the optical fre-
quencies. Then,

Z(ω) � (Z0σ intra)
�1 ¼ (1=τ � iω)=(Z0c1), (19)

FIG. 2. Color maps of TSCS (a) and ACS (b) vs two variables: the angular width of graphene strip and the frequency. Panels (c) and (d) show cross sections of maps on
panels (a) and (b) at the fixed angular widths of graphene strip, 2δ. Panels (e) and (f ) show zoomed-in areas of the right-bottom corners of panels (a) and (b), respec-
tively. The dielectric rod radius is R = 50 μm, its relative dielectric constant is εI ¼ 2:4, and the graphene parameters are explained in the text.
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where

c1¼ q2e kBT(π�h
2)

�1
{μc(kBT)

�1 þ 2 ln (1þ exp(�μc(kBT)
�1))} (20)

is a value that is independent of the frequency, qe is the electron
charge, kB is the Boltzmann constant, T is the temperature, �h is the
reduced Planck constant, τ is the electron relaxation time, and μc is
the chemical potential.

The plasmon modes (i.e., the natural oscillations) of a strip of
graphene are commonly viewed as the modes of a Fabry-Perot res-
onator working on the plasmon surface wave,8–10 which bounces
between the strip edges. This is an empiric model, which is
however well supported by the full-wave computations and experi-
ments. Assuming that the graphene layer is infinite and its curva-
ture can be neglected, the complex propagation constant of the
plasmon wave can be found as

γ2plas(ω) � k2(εI þ εII)
1
2
� Z2(εI þ εII)

� �
: (21)

Then, the approximate empiric equation for the transverse
plasmon modes on the strip of the width 2δR is obtained as

sin(Reγ plas2δRþ ψ) � 0: (22)

Here, the value of ψ is associated with the phase of the
reflection coefficient of the plasmon wave from the strip edge.

Our study has shown that the best fit of the first-order plasmon-
mode resonance is provided by ψ ¼ π=4. Note that expression
(21) is more accurate than Eq. (25) of Ref. 10, which can be
obtained by setting Z = 0.

The roots of (22) determine the natural frequencies of the
graphene strip plasmon modes Pm, whose fields are symmetric
and anti-symmetric with respect to the strip middle point. They
can be assigned odd (m = 1,3,…) and even indices (m = 2,4,…),
respectively. In view of the fact that the graphene surface
impedance is a function of the frequency given by (19), the res-
onance values of the graphene strip angular width are obtained
as follows:

2δ � (πm� ψ)ω�2Z0cc1[(εI þ εII)R]
�1: (23)

As demonstrated by the numerical results presented in Sec. V,
this equation is in excellent agreement with full-wave computations.

V. NUMERICAL RESULTS

Here, we present and discuss several characteristics, which
depend on the frequency and the size of the graphene strip. These
are the far-field scattering pattern,

D(f) ¼
Xþ1

n¼�1 C2,n(�i)neinf=H(1)
n

0
(kIIR), (24)

FIG. 3. The same in Figs. 2(a) and
2(b), however for the graphene-strip
arc rotated by 90° around rod’s axis.

FIG. 4. Normalized near-field patterns
for the 50-mm rod of εI ¼ 2:4 without
graphene illuminated by a plane
H-polarized wave at f = 5.438 THz. The
right panel shows a zoom of a part of
the left panel.
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FIG. 5. The same as in Fig. 4,
however for the rod with a graphene
strip at its rear side, with the strip
angular width and the frequency as
indicated. (a) and (b) 2δ ¼ 36�,
f ¼ 1:7 THz, (c) and (d) 2δ ¼ 8:88�,
f ¼ 3:704 THz, (e) and (f ) 2δ ¼
4:42�, f ¼ 5:438 THz, (g) and (h)
2δ ¼ 3:46�, f ¼ 5:999 THz, (i) and ( j)
2δ ¼ 13:18�, f ¼ 5:999 THz.
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and the total scattering and absorption cross sections, i.e.,

STSCS ¼ (4=kII)
Xþ1

n¼�1 jC2,nj2jH0
nj�2, (25)

SACS ¼ RReZ
ðβ
α
jv(f)j2df: (26)

In computations, we normalize the cross sections by 4R, and
take R ¼ 50 μm and the following parameters of graphene: τ ¼ 1 ps,
T ¼ 300K, μc ¼ 0:5 eV. To clarify the effect of the graphene strip,
we build color maps of total scattering cross section (TSCS) and
absorption cross section (ACS) as a function of the frequency and
the strip angular width (see Figs. 2 and 3). On these maps, a
higher-scattering range between 2.5 and 4.5 THz is the contribu-
tion of the dielectric rod, while that of the strip shows up as
narrow curved “ridges.”

On the maps, the white dashed curves are the values predicted
by (23) for the orders m from 1 to 5. As visible, the odd-index
curves agree well with the actual resonances on the corresponding
plasmon modes of the curved graphene strip. Here, the resonances
on the even-index plasmon modes are absent because these modes
are “dark” in the case of symmetric strip placement. For better
understanding, the plots in Figs. 2(c) and 2(d) show the sections of
the maps presented on panels (a) and (b), respectively, at the fixed
values of strip angular width, 2δ. In Figs. 2(e) and 2(f ), we zoom in
the high-frequency extensions of Figs. 2(a) and 2(b), respectively,
where graphene becomes more transparent; however, the plasmon-
mode resonances are still present, on the narrower strips.

The maps in Figs. 3(a) and 3(b) are similar to those in Figs. 2(a)
and 2(b); however, computed for the graphene strip attached to the
dielectric rod in such a way that the strip center is on the y axis of
Fig. 1. Modification of our equations to arbitrary nonsymmetric strip
placement needs some algebra, not presented here. In this case, the
even-index plasmon modes become “bright,” i.e., the corresponding
resonance peaks appear on the spectra of TSCS and ACS. As visible,
their location is also well predicted by Eq. (23).

To understand why so narrow graphene strips remain strong res-
onant absorbers if located at the rear side of the rod, we have analyzed
the near-field patterns, i.e., the portraits of the jHzj value normalized
by H0 ¼ 1A=m. The field in Fig. 4 corresponds to the 50-μm dielec-
tric rod without graphene strip at the frequency of 5.438 THz. Here,
one can clearly see the photonic jet1,2 at the rod rear side.

This high-intensity field spot has its maximum inside the
rod near to its boundary; at the higher frequencies, it shifts out of
the rod, however, remains close to its boundary. This feature has
broadband geometrical-optics character. Therefore, if a narrow gra-
phene strip is placed on the rear side of the rod and its width is
tuned to a plasmon resonance, it is illuminated more efficiently and
the ACS shows a peak at the frequency of (23). Several in-resonances
near fields are shown in Fig. 5. The solid white arcs indicate gra-
phene strips and the dashed arcs—the dielectric rod boundary. In all
cases, the graphene strip is placed on the rear side of the rod and
hence near the photonic-jet area.

Panels (a),–(h) correspond to the first order plasmon P1 (m = 1)
and panels (i) and ( j) to the third-order plasmon P3 (m = 3). As
already mentioned that if the incident plane wave propagates along
the x axis, then the even-order plasmon modes of the strip remain

“dark” (not excited) because their fields are orthogonal to such excita-
tion. It is clearly seen that the peak field value gets higher for the nar-
rower strips, apparently because the photonic jet becomes brighter.

Here, the resonance on P1 yields a three times greater incre-
ment in the near-field amplitude than on P3 at the same fre-
quency of 5.999 THz. This indicates inherently that the Q-factor
of P3 is three times lower than the Q-factor of P1 that is in line
with inverse-m behavior of Q-factors of modes in the other
Fabry-Perot resonators.

Note also that if the strip material is a perfect electric conduc-
tor (Z = 0), then the plasmon modes are absent and the discussed
resonance phenomenon does not exist.

VI. CONCLUSION

We have presented the results of the accurate study of the scat-
tering and absorption of an H-polarized THz plane wave by a
graphene-strip decorated circular dielectric rod. If a narrow strip is
placed on the rod’s backside, it demonstrates a sharp growth of the
near field at a certain high frequency. This is a combination of two
effects. The first is the nonresonant optical effect called the pho-
tonic jet, and the second is the strip plasmon resonance. We would
like to emphasize that our results have been computed with the aid
of the convergent numerical method and have an accuracy of 10−6

or better in the near-field data.
We believe that the reported effect can be potentially useful

for enhancing the imaging characteristics of THz systems. Besides,
it can be used for the additional enhancement of the local field in
the jet domain that can be attractive in the design of more sensitive
THz receivers.
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