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ABSTRACT

We study the radiation that occurs if a modulated beam of electrons flows between two identical high-index dielectric nanowires, which
form a photonic molecule, in the visible wavelength range. The electromagnetic field of such a two-dimensional beam has the shape of the
surface wave propagating along its trajectory. This wave induces the polarization and surface currents on the nearby obstacles, and hence,
radiation occurs even if the beam does not touch the obstacle. Here, a pair of dielectric nanowires behaves as optically coupled open resona-
tors, thanks to which the diffraction radiation is enhanced near the wavelengths of the natural modes. As known, the latter are so-called
supermodes built on the modes of each wire, with the account of two-fold symmetry of the pair. To solve accurately the scattering problem,
we use a semianalytical technique based on the Fourier expansions in the local coordinates of each wire and the addition theorems for the
cylindrical functions. This leads to the efficient code having mathematically guaranteed convergence. We compute spectral characteristics of
the diffraction radiation, analyze their dependences on the electron-beam parameters, and visualize the near-field and far-field patterns.
A new form of the optical theorem adapted to the modulated electron-beam excitation is derived and exploited. Possible applications of the
studied effects in the design of optical beam position monitors are discussed.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5095722

I. INTRODUCTION

Photonic molecules (PMs) have been attracting the attention of
researchers since the late 1990s as configurations occupying an interme-
diate place between photonic crystals and “photonic atoms,” or stand-
alone dielectric particles.1–6 PMs are configured as a finite number of
identical elements, usually having certain symmetry, say, a linear
“chain” of them or a cyclic “necklace.” They confine light and enable
its efficient manipulation at the micrometer length scale due to the
tight photonic binding (i.e., strong optical coupling). This is an alterna-
tive to the manipulation of light in the photonic crystals which are the
media with periodic variation of refractive index and almost “free”
photon propagation. The simplest PM contains two identical spherical2

or circular-wire (Fig. 1) elements and hence it has two-fold symmetry.
This circumstance leads to the appearance of four orthogonal

families of natural modes of such a twin PM.3 Here, each mode of
PM is built on a certain mode of the individual dielectric cavity,
the cavities being optically coupled together in one of the four

possible ways. Therefore, coupled-cavity modes are called “superm-
odes.” Each family’s supermodes possess either symmetry or
antisymmetry of each field component with respect to each symme-
try plane. This is usually expressed via the terms “bonding” and
“antibonding” or “even” and “odd,” respectively. Besides, the sym-
metry and antisymmetry can be understood via the placement of
the virtual perfect electrically conducting (PEC) or perfect magneti-
cally conducting (PMC) wall along the corresponding symmetry
plane. Under an external illumination, say, with a plane wave, PM
supermodes can be either “bright” ones, that is, display resonances
in the scattering and absorption, or remain “dark.” The latter
happens if the incident field symmetry is different from the sym-
metry of the supermode natural field.

Although the bulk of research in nano-optics and photonics is
performed around the excitation of dielectric nanoresonators with
either plane or cylindrical waves, charged particles and beams of
them can also serve as a source. As it was first found in the 1950s,
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the electrons passing nearby a periodic structure, say, a lamellar
grating, radiate the light. This effect obtained the name of its discov-
erers, Smith and Purcell (SPE).7 Since then, it was actively studied
both experimentally and theoretically.7–9 Today, SPE is considered
as a particular case, although perhaps the most practically important
one, of a more broadly defined effect. This is the radiation of the
surface and polarization currents induced on various material
objects in various frequency regions by the charged particles or
their beams, which do not touch or hit these material objects. In
order to distinguish this type of electromagnetic-wave radiation
from the others, such as, for instance, the transition radiation, it is
commonly called the diffraction radiation (DR).10–12

Obviously, such DR is characterized by the far-field angular
patterns and the radiated power that depend on the electron-beam
bunching, velocity, and fine distance from the scatterers to the
beam trajectory. Therefore, DR can serve as a basis for the develop-
ment of beam position monitors (BPMs). Such monitors are
known in the microwave range.13–17 However, the emergence and
rapid development of nanotechnology open a way to the use of
nanoscale components in various optical circuits. In fact, today the
design of optical-range DR-based BPMs is viewed as the most
promising technique in noninvasive beam diagnostics.18,19 Another
application area is related to the novel accelerating techniques.20

Our goal is the exploration of the opportunity of using the
PM configuration shown in Fig. 1 and its DR characteristics for
obtaining the information on the beam position shift h. Nanoscale
size of such sensor antennas introduces negligible distortion to the
beam energy characteristics, which can be considered as fixed. This
makes possible the analysis of the BPM in the same way as within
the traditional electromagnetic theory, i.e., as the scattering of the
given electromagnetic-wave field of the moving beam by the scat-
terers of given shapes and material properties. The latter parame-
ters can be manipulated to optimize the BPM performance.
Note that high refractive index dielectric nanowires can be designed
resonant and, moreover, tunable if covered with the graphene.21–24

II. MODULATED BEAM FIELD AS A SURFACE WAVE

Consider an unbounded two-dimensional (2D) electron beam
moving along the straight trajectory at the distance from h from
the x axis, with a fixed velocity v ¼ βc (where β � 1). The charge
density function, if modulated in time in a harmonic manner, can
be presented as

ρ ¼ ρ0δ(y � h) exp[i(kx=β � ωt)], (1)

where δ(�) is the Dirac delta function, ω and ρ0 are the frequency
and the amplitude of the beam modulation, respectively. k ¼ ω=c is
the free-space wavenumber and c is the light velocity. In practical
conditions, harmonic modulation of the electron beam can be
arranged by its preliminary bunching in the periodic waveguide or
by using the laser emission.20

As is known,8 the electromagnetic field of the beam (1) in the
free space is H-polarized, and

H0
z (x, y) ¼ A sign(y � h)e�qjy�hjei(k=β)x , (2)

where q ¼ kγ=β, γ ¼ (1� β2)1=2, function sign(�) ¼ +1 is the sign
of the expression in the brackets, time dependence is omitted, and
A . 0 is a constant. This is a surface wave, which travels along the
beam trajectory in the + x-direction and decays exponentially in the
normal direction. It has a finite jump corresponding to the current
at the beam trajectory. Note that the field (2) is an antisymmetric
function of the coordinate y with respect to the beam trajectory that
is a drastic difference from more conventional in optics plane-wave
field, which is symmetric with respect to the propagation direction.

III. PROBLEM FORMULATION AND BASIC EQUATIONS

Consider a photonic molecule formed by two identical circular
dielectric nanowires (#1 and #2) separated by distance L between
their axes, with the same radius a and refractive index α ¼ ffiffiffi

ε
p

(with ε being the relative dielectric permittivity). We assume that the
electron beam (1) moves between the wires in parallel to the x axis at
the distance h from it. Hence, the beam separation from the lower
(upper) wire surface is d ¼ L=2� a+ h. The Cartesian and the
local and global polar coordinates are shown in Fig. 1.

The formulation of the 2D boundary-value problem for the
unknown scattered field involves the Helmholtz equation off the
wire contours of cross section, the penetrable-boundary conditions
at these contours, the Sommerfeld radiation condition at infinity,
and the local condition of the power finiteness. These conditions
guarantee the solution uniqueness.

The above formulated PM configuration has been considered in
a number of publications; however, to the best of our knowledge, it
has not been studied with the electron-beam field (2) as a given exci-
tation field. Here, the approximate numerical techniques like those
referred in Ref. 25 and commercial finite-difference time-domain
codes26 are important for engineering applications, however, not
enough accurate if studying the fundamental wave effects such as
sharp resonances. Therefore, we follow the semianalytical technique
first introduced by Twersky27 and further improved in Refs. 3, 28,
and 29. This technique exploits the circular shape of the boundaries

FIG. 1. Cross-sectional geometry of an electron beam moving between a pair
of identical circular nanowires, which form a photonic molecule.
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of wire cross sections and combines the expansion of the field function
in the azimuth Fourier series (in the local polar coordinates of each
wire) with the addition theorems for the Bessel functions. It enables
one to reduce the scattering problem to the infinite-matrix equation
for the expansion coefficients. The important correction, introduced in
Refs. 3, 28, and 29, is the rescaling of that matrix equation to cast it to
the Fredholm second-kind form. This correction guarantees the con-
vergence of the numerical solution, in the mathematical sense.

Guided by these considerations, we expand the field in terms
of the azimuth-coordinate Fourier series inside each wire

Hint(p)(r, w) ¼
X1

m¼�1
y(p)m Jm(kαrp) exp(imwp), rp , a, p ¼ 1, 2:

(3)

In the presence of the twin scatterers, the total field in the
external domain has the form of the sum

Hext ¼ H0 þHsc, (4)

Hsc(r, w) ¼
X
p¼1,2

Xþ1

m¼�1
z(p)m H(1)

m (krp) exp(imwp), rp . a, (5)

where Jm(�) and Hm(�) are the Bessel and Hankel first-kind functions,
and (rp, wp), p ¼ 1, 2 are the local polar coordinates of the wires.

Expressions (3) and (5) satisfy the Helmholtz equation, the
local power finiteness condition, and the radiation condition. To
determine the unknown expansion coefficients, these expressions
are substituted to the boundary conditions at the contours of the
wires. Here, the addition theorems for the Bessel and Hankel func-
tions are used as in Refs. 3 and 27–29. After the exclusion of the
coefficients y(p)n , we obtain two coupled infinite-matrix equations
for the remaining coefficients

z(1,2)m þ
Xþ1

n¼�1
z(2,1)n (+i)n�mVm(Pm)

�1Jn(ka)Hm�n(kL)

¼ �[ f (1,2)m (ka)J 0m(kαa)α � Jm(kαa) f
0(1,2)
m (ka)](Pm)

�1, (6)

Vm ¼ αJm(ka)J
0
m(kαa)� J 0m(ka)Jm(kαa), (7)

Pm ¼ Jm(ka)[αHm(ka)J
0
m(kαa)�H0

m(ka)Jm(kαa)], (8)

f (1,2)m ¼ +A exp[�q(L=2+ h)]imJm(ka)(1+ γ)mβ�m, (9)

where the superscript of the Hankel function is omitted and the
prime means the differentiation in argument.

Inspection of (6) shows that the diagonal matrix elements of
the first (second) block of (6) characterize the scattering by,
respectively, the first (second) wire in the free space, and the
off-diagonal elements characterize the optical interaction. Note
that the off-diagonal elements are not zero and hence the interac-
tion is always present and decays rather slowly, as O[1=(kL)1=2] if
kL ! 1.

The obtained set (6) is a Fredholm second-kind infinite-
matrix equation (see Refs. 3, 28, and 29) due to the fact thatPþ1

m,n¼�1 jA(1,2)
mn j

2
, 1 and

Pþ1
m¼�1 jB(1,2)

m j2 , 1, where the
matrix elements A(1,2)

mn and the right-hand part elements B(1,2)
m

follow from (7) to (9). Then, the Fredholm theorems guarantee that
its numerical solution (after truncation to finite order M) converges
to the exact solution. To obtain 5 correct digits in the near field, one
has to take M � kαaþ 5 (and more if the airgap L−2a gets much
smaller than a).

IV. SCATTERING AND ABSORPTION CROSS SECTIONS

On using the large-argument asymptotic expressions for the
Hankel functions, the scattered field in the far zone (r ! 1) takes
the form of a cylindrical wave, Hsc(r, w) ¼ (2=iπkr)1=2Φ(w) exp(ikr),
where the far-field angular scattering pattern depends on the coeffi-
cients z(1,2)m as

Φ(w) ¼ Φ1(w)þ Φ2(w), Φ1,2(w) ¼ exp(+1
2ikL sinw)

Xþ1

m¼�1
(�i)mJm(ka)z

(1,2)
m exp(imw): (10)

Then, the total scattering cross section is found as

σsc ¼ 2
πkA2

ð2π

0

jΦ(w)j2dw: (11)

If the dielectric wires are lossy, then, besides the scattering, a
part of the power of the incident field is absorbed in PM. This is

characterized by the absorption cross section (ACS), which is
found from the integration of the normal component of the time-
averaged Poynting vector over the contours of the wires. This leads
to the following equation:

σabs ¼ 2πa

jαj2A2

X1
m¼�1

�
jy(1)m j2 þ jy(2)m j2

�
Im

h
αJm(kαa)J

0
m(kα*a)

i
, (12)
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where

y(1,2)m Jn(kαa) ¼ z(1,2)m Hm(ka)

þ
Xþ1

n¼�1
(+i)(n�m)z(2,1)n Jn(ka)Hm�n(kL)þ f (1,2)m :

(13)

Thus, on solving the matrix equation (6) truncated to finite
order M, one can calculate the scattering and absorption cross sec-
tions and the near- and far-field patterns. Note that the accuracy of
the calculation of the near field and hence the ACS is the same as
the accuracy of solving (6). However, the accuracy of calculation of
the far-field angular pattern (10) and the TSCS (11) is approxi-
mately by an order of magnitude better because of the presence of
the Bessel functions, which decay exponentially with n if n > ka.

Note that the sum of TSCS and ACS is called the extinction
cross section.30 Thanks to the Complex Poynting Theorem applied

to the total field function and its complex conjugate, the extinction
of the considered PM can be connected to the far-field values in
certain complex directions. Here, it is necessary to introduce the
complex-valued angles of incidence of the wave (2) in the upper
and lower half-spaces, ψ1,2, such that

cos ψ1,2 ¼ 1=β, sin ψ1,2 ¼ +iγ=β: (14)

Then, the real part of the expression, which follows from the
Complex Poynting Theorem reduces to

σsc þ σabs ¼ � 4
kA2

Re[Φ1(ψ1)þ Φ2(ψ2)] (15)

or, with an account of (10),

σsc þ σabs ¼ � 4
kA2

e�qL=2Re
Xþ1

m¼�1
(�im)Jn(ka) z(1)n e�qh 1� γ

β

� �m

þ z(2)n eqh
1þ γ

β

� �m� �
: (16)

The obtained expression plays the role of the optical theorem
for the diffraction radiation excited by the electron beam (1)
flowing between the wires of a twin-wire PM. If the TSCS value
has been found, then the ACS value can be determined from (16)
instead of (12). Comparison of two values of ACS, found from
(12) and (16), can be viewed as a partial validation of the solution
correctness. Still, their coincidence is only a necessary condition of cor-
rectness; however, it is not a sufficient one. The sufficient test is pro-
vided by the verification of the fulfillment of the boundary conditions.

In our work, the optical theorem has been satisfied at the level
of machine precision and the boundary conditions have been
satisfied with the same accuracy as the solution of the matrix equa-
tion (6), controlled by the truncation order M. Additional valida-
tion has been provided by the fact that if the relative dielectric
permittivity of the wire #2 is set to be 1, then the computed TSCS
and ACS are the same as for a single dielectric wire excited by the
beam (1), where the full-wave analytical solution is available.12

V. NUMERICAL RESULTS

In computations, we are looking for the features of the DR
associated with twin-cavity PM configuration that can be used for
the detection of the shift of the beam trajectory from the central
position between the dielectric wires. We are also interested in
seeing the effect of the relative beam velocity, β, on the DR.

Here, we keep in mind that the modes of twin-wire PM
(Fig. 1) are in fact “supermodes” built on the natural modes of each
separate circular wire and optically coupled in four possible ways
because of the two-fold symmetry. The reason of the splitting to
quartets of supermodes is that the modes in a stand-alone circular

cavity are double degenerate; however, this degeneracy is removed
by bringing another circular cavity. Each supermode family has
certain symmetry or antisymmetry of its field pattern with respect
to each of the symmetry lines; therefore, they are classified usually
as “x-even, y-even” (EE), “x-even, y-odd” (EO), “x-odd, y-even”
(OE), and “x-odd, y-odd” (OO). If the electron beam flows along

FIG. 2. Normalized TSCS of the 50-nm in radius one (dashed curve) and two
silicon nanowires vs the wavelength in the visible range, for several values of
the electron relative velocity β. The beam flows along the x axis (h = 0).
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the x axis, i.e., exactly in the middle between the dielectric wires,
then its field (2) is an antisymmetric function of y with respect to
y = 0. Such incident field is able to induce only the resonances on
the modes of the (EO) and (OO) families, the supermodes of the
other two families, (EE) and (OE), remain “dark.” The latter-mode
resonances can be expected to start shining if the beam trajectory
shifts from the central position, i.e., if h≠ 0. This effect can poten-
tially serve as a marker for beam position monitoring.

We start our numerical experiments from the PM made of two
subwavelength wires with a = 50 nm, and ε ¼ 12 (α ¼ 3:4641).
Such a material is similar to silicon or GaAs that have very small
losses in the visible range, so that, at first, we neglect them.
The airgap between wires is 20 nm. Figure 2 demonstrates the depen-
dences of the normalized total scattering cross section (TSCS) on the

beam modulation wavelength, for one and two thin subwavelength
nanowires with the beam shift h = 0 nm and several values of the
beam velocity β. As already mentioned, stand-alone circular dielec-
tric nanowire is a convenient reference scatterer, for which the DR
problem can be solved analytically similar to the plane-wave scatter-
ing—see Ref. 12 for details.

For all β, the plots of TSCS show three distinctive peaks at
λ = 225 nm, 306 nm, and 464 nm with smooth shapes. The intensity
of DR decays if β gets smaller, i.e., for a nonrelativistic beam,
because its field (2) becomes compressed to the beam trajectory. The
resonance peaks are broad that tells that the corresponding natural
modes have small Q-factors. This is apparently the reason that no
splitting into doublets of the (EO) and (OO) supermodes is visible
so that each peak is a collective resonance on both of them.

FIG. 3. The same as in Fig. 2, however, for one (dashed curves) and two (solid curves) silicon nanowires of the 200-nm radius (a) and a zoom of the TSCS spectra for in
the wavelength range from 350 nm to 370 nm (b).

FIG. 4. Symmetric beam excitation. In-resonances normalized far-field scattering patterns of twin silicon nanowires of the radius a = 200 nm, L = 120 nm, h = 0, and
β = 0.5 at λ = 359.85 nm (a) and 361.17 nm (b).
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FIG. 5. Symmetric beam excitation. In-resonances near-field patterns of twin silicon nanowires of the radius a = 200 nm, L = 120 nm, h = 0, and β = 0.5 at λ = 359.85 nm
(a) and 361.17 nm (b).

FIG. 6. Nonsymmetric beam excitation.
The same as in Fig. 4 for a = 200 nm,
L = 420 nm, h = 5 nm, and β = 0.5 at λ
= 359.85 nm (a), 360.76 nm (b), and
361.17 nm (c).
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Moreover, if the beam trajectory is shifted from the x axis,
these peaks do not split further, again because of the low Q-factors
of the (EE) and (OE) supermodes, which are “dark” if h = 0 but
became “bright” if h≠ 0. They give an idea that too thin dielectric
wires, even if made from high refractive index material, are not a
promising configuration for the beam-diagnostics applications.

Therefore, the plots in Fig. 3(a) demonstrate the wavelength
scans of TSCS for much thicker silicon nanowire PM with a = 200 nm
and the same airgap of 20 nm. As one can see, in this case, there are
multiple resonances within the visible range (i.e., for λ from 300 nm
to 800 nm). A zoom of the part of the spectrum near to 360 nm is
shown in Fig. 3(b) for the beam velocity β ¼ 0:5 and two beam shifts,
h = 0 and h = 5 nm.

According to Ref. 3, the quartets of supermodes actually form
two tight doublets: one of the (OO) and (EO) families modes and
another of the (EO) and (EE) families. Close inspection shows that the
complex poles underlying the higher-Q peak of TSCS for h = 0 at the
wavelengths of 359.85 nm in Fig. 3(b), correspond to the supermode

HOO
8,1 and apparently not resolved sister-mode HEO

8,1 . Similar to that,
a broader peak at 361.17 nm corresponds to the lower-Q super-
mode HOO

7,2 and its not resolved sister-mode HEO
7,2 . This interpretation

is fully supported by the in-resonance normalized far-field angular
patterns and the near-field patterns shown in Figs. 4 and 5, respec-
tively, for the symmetric excitation of twin-wire PM (h = 0). The
beam trajectory is indicated by the dashed line. In each peak, the
supermodes of the (OO) family dominate in the total field.

What is most important from the viewpoint of applications in
BPM design, if the beam trajectory is shifted from the x axis, then
new additional peaks of TSCS appear. This is visible on the
zoomed spectrum shown in Fig. 3(b) for h = 5 nm: an additional
sharper peak starts shining at 360.76 nm and a broad peak appears
at 365.5 nm. The corresponding in-resonance far-field angular pat-
terns and the total near-field patterns are depicted in Figs. 6 and 7,
respectively.

Note that the pattern in Fig. 6(a) is very close to the pattern in
Fig. 4(a) and that in Fig. 7(a)—to the one in Fig. 5(a). The same is

FIG. 7. Nonsymmetric beam excitation. The same as in Fig. 5 for a = 200 nm, L = 420 nm, h = 5 nm, and β = 0.5 at λ = 359.85 nm (a), 360.76 nm (b), and 361.17 nm (c).
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FIG. 8. Normalized TSCS of PM on twin silicon nanowires of 400-nm radius with 20-nm airgap vs the wavelength, for the electron relative velocity β = 0.5 and two values
of the shift distance h.

FIG. 9. Nonsymmetric excitation. In-resonances near-field patterns of twin silicon nanowires of the radius a = 400 nm, L = 820 nm, h = 5 nm, and β = 0.5 at λ = 421.88 (a),
422.58 (b), 423.47 (c), and 425.60 nm (d).
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visible for the patterns shown on panels (c) of Figs. 6 and 7 and
panels (b) of Figs. 4 and 5, respectively. This leads to the conclu-
sion that the supermodes with the fields, antisymmetric with
respect to y, are weakly sensitive to the shift h of the beam trajec-
tory. The explanation of this property can be seen in the fact that
these modes have zero values of their H-fields on the x axis and
hence it is much better compatible with the incident field (2) than
of the y-even mode families.

In contrast, the patterns shown in Figs. 6(b) and 7(b) corre-
spond to the new resonance at 360.76 nm, which is absent if h = 0.
They demonstrate that this is the resonance on the supermode
HEO

8,1 , with some admixture of its not resolved sister-mode HEE
8,1,

which has smaller contribution. Similar conclusions can be reached
for the broad peak at 365.5 nm, not existent at h = 0.

To further support these conclusions, we have computed the
TSCS spectra for the symmetric and shifted beam excitation of the
twin-wire PM with even larger (but still nanoscale) silicon resona-
tors of 400-nm radius. The corresponding plots are presented in
Fig. 8(a) for β ¼ 0:5 and the shift values h = 0 and h = 5 nm in the
range of wavelengths between 400 nm and 500 nm, and a zoom
around 423 nm is shown in Fig. 8(b). Like in the previous example,
the TSCS of the PM excited by symmetrically flowing beam dem-
onstrates two resonance peaks, while the non-symmetrically excited
PM—four resonance peaks.

As we could already see, the interpretation of the resonances is
best achieved via visualizing the near-field patterns. The four
in-resonance field patterns corresponding to the four peaks of TSCS
in Fig. 8(b) for the beam shifted by h = 5 nm are presented in Fig. 9.

They demonstrate convincingly the fields dominated by the
higher-Q supermodes HOO

12,2 at 421.9 nm and HOE
12,2 at 422.6 nm

in the sharp peaks of TSCS, and the lower-Q supermodes HOO
9,3 at

423.5 nm and HOE
9,3 at 425.6 nm—in the broader peaks of TSCS. In

each case, the pattern is slightly distorted by the presence of not
fully resolved sister-supermode of the x-even family. Here, similarly
to the previous example with 200-nm in radius twin-wire PM, the
appearance of the peaks on the y-even modes HOE

12,2 and HOE
9,3 can

serve as a marker of the beam deviation from the center of the
20-nm airgap.

Finally, we have analyzed in detail the sharper peaks of TSCS
in Fig. 8(a) near to the wavelength of 415 nm. The zoomed area
around this wavelength is shown in Fig. 10 for the shifted by 5 nm
and not shifted trajectories of the electron beam with β = 0.5.
Similar to the previous analysis, the sharper peak on the HOO

16,1
supermode at λ = 415.1219 nm is present in both cases and keeps
the same shape, and the other peak on the HOE

16,1 supermode at
415.489 nm appears only if the beam trajectory is shifted. The
supermode type identification is based on the visualization of the
near-field patterns in these two resonances, presented in Fig. 11.

FIG. 10. Zoom of TSCS curves from Fig. 8(a) between λ = 415 nm and 415.6 nm.

FIG. 11. Nonsymmetric excitation. In-resonances near-field patterns of twin silicon nanowires of the radius a = 400 nm, L = 820 nm, h = 5 nm, and β = 0.5 at λ = 415.1219
nm (a) and 415.489 nm (b).
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Thus, such an effect is also a marker of the beam trajectory devia-
tion from the central (symmetrical) position.

So far we have been discussing the numerical results com-
puted with the lossless dielectric cavities. In order to obtain a
vision of the role played by the losses, now we introduce small bulk
material losses, Im ε, in the 400-nm in radius wires and compute
the ACS as a function of the wavelength—see Fig. 12. The PM and
the electron-beam parameters are taken the same as in Fig. 8(b).

As one can see, the ACS spectra show the resonance peaks
at the same wavelengths as on the plots of TSCS, which are
not shown here because for so small bulk losses they overlap with
the curves in Fig. 8(b). The maximum value of the absorption is
achieved in the resonance on the most high-Q mode, HOO

12,2;
however, it is still by the order of magnitude lower than the reso-
nance scattering [compared with Fig. 8(b)]. Similar to the scatter-
ing cross-section, two additional peaks of the absorption appear if
the beam trajectory deviates from the airgap center, due to now
“bright” y-even modes HOE

12,2 and HOE
9,3 . If the bulk losses in the

dielectric material are taken 10 times greater, 10−3 instead of 10−4,
then the ACS curves also rise by approximately an order, except the
high-Q resonances where this rise is canceled by the Q-factor,
which in this case is inverse proportional to the bulk losses.

VI. CONCLUSIONS

The field of the periodically modulated, in density, electron
beam can be viewed as a surface wave propagating along the beam
trajectory. This wave field has unusual optical properties: it is anti-
symmetric with respect to the beam trajectory. It induces the
secondary currents on the local obstacles that radiate in the back-
ground medium even if the beam does not touch them. In fact, a
nearby scatterer plays the role of an optical nanoantenna, which
makes the beam of charged particles visible. We have studied, using
an accurate and mathematically grounded in-house code, the beam
excitation of a photonic molecule formed by a pair of identical

nanowires made of high refractive index dielectric material, with a
beam flowing between the wires. Such a PM behaves as a composite
optical open resonator, which supports supermodes built on the
natural modes of each cavity combined together according to the
two-fold symmetry of this configuration. The emerging diffraction
radiation is resonantly enhanced near each natural supermode wave-
length. As we have found, if the beam trajectory shifts away from the
central (i.e., symmetrical) position, then new peaks in the spectra of
the scattering become visible. They are due to the resonances on the
formerly “dark” supermodes, which are absent in the symmetric
beam excitation. This effect can be important for applications related
to the design of novel optical-range beam position monitors. Here, a
question of the feasibility arises. In fact, today, the size of controlla-
bly manufactured subwavelength dielectric microcavities is measured
in hundreds and dozens of nanometers. So, in principle, this is real-
istic. Besides, the scattering by a dielectric resonator with a fixed rela-
tive permittivity can be scaled up to larger sizes and wavelengths.
For example, the curves presented in Figs. 8–11 for the wire radius
400 nm and the wavelengths of 400 nm to 500 nm are equally valid
for the wire radius 4mm and the wavelengths of 4mm to 5mm.
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