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PRINCIPAL AND HIGHER CRDER MODES
OF MICROSTRIP AND SLOT LINES
ON A CYLINDRICAL SUBSTRATE

Alexander |. Nosich and Alexander Ye, Své;hentsev
Institute of Radio Physics and Electronics
Ukrainian Academy of Sciences
12 Proskura Street, Kharkov 310085, Ukraine

1. INTRODUCTION

Microstrip and slot antennas, and transmission lines which conform to cylindrical non-
planar substrates, may be of significant interest in many applications. In previous papers
(1], [2], the waveguide properties of a microstrip line on a circular cylindrical substrate were
characterized under the approximations of a quasistatic model. A dynamic analysis has
been presented in [3]. A similar analysis has been carried out in [4] for a pair of coupled
microstrip lines. The results presented up to now refer only to the dominant principal waves
of these guides, while results on other principal and higher order modes remain unpublished.
However, as the frequency of operation is increased, microwave and millimeter wave inte-
grated circuits on curved substrates call for the development of a detaited description of the
modes supported by such structures.

In this paper we analyzce the same structure as in [3], the geometry of the cross section being
shown in Fig. 1. We do not introduce any restrictions on wavelength or on angular width
of the strip, thus obtaining the possibility to consider an analogous slot line on cylindrical
substrate with the same treatment. The method of analysis follows [5] and [6], which was
developed for a partially screened circular dielectric core. It is based on reducing the initial
problem first to dual series equations, and then to a regularized Fredholin-type system of
lincar algebraic cquations of the second kind. The key idea of regularization is to make
use of the so-called Riemann-Hilbert technique, the mathematical details of which may
be found in [7]. This approach enables oue to oblain proof of the existence of a discrete
cigenvalue spectrum in the same way as lor a partially screencd core (5], [6]. Even more
importantiy, it results in a highly eflective numerical algorithm with a guaranteed accuracy,
in contrast to the solutions obtained by most of the moment, or Galerkin, methods. This
provides a way to check the validity of the approximate results of {1] and [2] for the dominant
mode characterization, as well as to investigate dispersive behavior of other principal modes
(without cutofl’}, and higher order modes of these lines.

Electromagnetics 13:85-94, 1993 85
Copyright © 1993 Taylor & Francis
0272-6343/93 $10.00 + .00



86 A. 1. NOSICH AND A, YE. SVEZHMENTSEV

26

FIGURE 1: Geometry of the problem

2. SPECTRAL PROBLEM: FORMULATION AND ANALYSIS

Seeking the solution of Maxwell equations with corresponding boundary conditions in the
form of a normal guided wave that depends on z and ¢ as e(*-@1 one comes 1o the
cross-sectional eigenvalue problems for a 2-I} Helmholiz equation

(6 +YWW ) = 0 (1)

where the components of W = (I/, V) represent lorgitudinal field components E, and H,
and 77 = k*¢; — h? with § = 1,2, denoting the substrate {1 = ¢) or free space (g7 = 1)
regions, respectively. The boundary conditions al r = a yield

whileat r=#
12 )
[ng(J)] . =0 (3)
=1 [gp
[LHWU)]? =0 {4)
=1 |ap
712}
LeW ,aM =0, (5)
where
1 0 —ke & h 8
Lg = h 8 -k @ In = ’
‘7}r ¢ 7} ar 0 1

and circular arcs 90 = (r = b, |¢] < 0) and M = (r = b, 8 < |¢| < =) denote
cross-sectional contours of the slot and the strip, respectively,
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Because of the sharp edges of the strip, we have to introduce the condition of local energy
limitation

Bj(|kWt’+|VW|’) dF < o0 (6)

for any compact domain B C R?, e.g., the one containing sharp edges. This inequality is
equivalent to the well known Meixner edge condition which specifies the field’s behavior as
functions of coordinates in the vicinity of the edge.

To have a complete formulation of the problem, one has to impose some condition at infinity
in the cross section, due to the open nature of the guide. In the conventional theory of guided
waves, the condition of exponential decay is usually applied. However, except for the surface
mode, other modes are eliminated, although leaky modes and other complex modes may
also be of interest. The most general condition of this kind is derived from the fact that
Green's function of Eq. (1} is a Hankel function of the first kind. Taking inte account the
addition theorem for cylindrical functions, one comes to the requirement that, outside a
finite-radius circle (e.g., r = b}, the field has to be expandable in the series

oo
W(F) = 3 (an b} HD (gr)e™ (7)
n=—go
where 7= v: 93 = k¥ — A2,
The basic problem in waveguide simulation is to find the complex eigenvalues for A, which
generate nontrivial eigenfunctions W{r) satisfying equations (1)-{(7). When obtaining the

value of A, one ¢an compute the mode field components, impedance, and even losses within
the modified perturbation theory [8].

To discretize this problem, we use the expansion of fields in a Fourier series over angular
functions, and take into account Egs. (1), (2), and (7).

Jn(n1a)  Ji(na) in
(v, v} = Zﬂ: (An, Bn) [Jn (nz)+ { H,,(?,l,a) ' H,‘,(:!y:a)} Ha(m Z)] e
(U(?), V(?))

2 (AL, B H (2 2)e™ (8)

Substituting this series into the remaining boundary condition (Eqs. (3)-(5)), we come to
the dual scries equations for the expansion coefficients, which are valid on 8D and M
of the circle r = b. Aflter some manipulation based on the assumption that the series
allows term-by-term diflerentiation, we obtain the coupled pair of dual series equations of
canonical form:

( Z Pnlﬂleiné = Z (Anp,‘+anﬁfpn)ei"¢, |¢| <9
n n

Zp.‘e‘“‘ =0, < |p| <7
\ n .

9)
Y malnle™ = 3 (Bncliparalip)em™, s< ol <n
n

n

S hee® = 0, Igl <0
\ n
where we denote

a = % ik (e - Dz~ e+ 1) B = thkbie - )27 yF
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E = 1+ @@ PR -F) v = 1 @B ) (F - ) 2

a5 = Inl - 28 e, p, - TEETGL (10)
Al = In|+% i T =mb; y=mb; mo=me;

bn = AL (Bl 5 Fu = Hi2) [z Ha)] 4

Buls) = = T+ )i ) = g dalin) 4 IA)

Equations of this type are known as ones with a trigonometric kernel, due to the well known
expansion of angular functions in terms of trigonometric functions.

After application to any limited domain (e.g. the substrate region), the last of the initial
conditions, Eq. (6), yields:

Y It Int1] < 0o 3 Ipalflnt1] <o . (1)
(n) n

The left-hand sides of each of Lthe dual series equations {9) may be shown to be equivalent
to the boundary value problem called the Riemann problem {sometimes referred to as the
Hilbert problem). The solution to this Riemann-Hilbert problem may be found in [7]. When
applied to our case, this solution permits us to carry out the partial inversion procedure
because of the fact that unknown coefficients are also present in the right-hand side. In
terms of the discretized problem under consideration, this results in an infinite system of
linear algebraic equations (sce [7] for details):

P = Z (Ar'a:npn"‘fl:nzn“n)
" (12)
Hm = Z (Av?nlnpn"l‘A?m?nﬂﬂ) ' m=0,£l,... ,
where "
Apn = Al tmn(u); A = aneg Tma(u);
Al = Prell rmn(—u) (1) AT = A ra (—u) (=)™ (13)

Tmn (8) = 270 (m = n)" [ Pasi(u) Pulu) — Pa(u) Paoa(u)] ; u = cosé;
and P,(+u) are Legendre polynomials.

Duc to the well known asymptotic behavior of Legendre polynomtials, the solutions of (12)
may be shown to behave ag 0 | m|~3/2) for large |m| . Thus, the conditions (11} are also
satisfied. But the most important thing is that Eqs. (12) are of the Fredholm-type system
of the second Lype, as the series

z [ Amn |
mn

is convergent. This fact guarantees numerical convergence of computations when approxi-
mating the roots of the equation

det(1- A(h)) = 0

by means of the roots of its truncated analog. To obtain any desired accuracy, one has to
increase the order of truncation N, appropriately. The following simple empirical rule has
been verified: 0.1% acenracy may be achieved by taking
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N; = entire(max(z,y)) + 5
for cach of the four blacks of the whole A(h} matrix.

3. CLASSIFICATION OF MODES

As can be seen in Fig. 1, the structure under investigation resembles two diflerent trans-
mission lines, depending on the strip/slot widths relation. One of them is a Goubau line
as #/8 < 1, and the other is a coaxial waveguide with dielectric filling as §/8 < 1. A
narrow strip or a narrow slot plays the role of perturbation factor for each of these guides,
shifting the mode spectrum points h;{(#) in a continuous manner as functions of & (or
§). It is well known that there are as many as threc modes in a Goubau line, having no
cutofl at low frequencies, i.e. the axially symmetric Ego mode and two orthogonally polar-
ized H E;; modes. All these modes are called principal modes (the term was introduced
by Sommerfeld), in contrast to higher order modes having finite cutofl frequencies. The
Eoo mode is also called dominant, for the much slower velocity than that of i Ey; modes.
Thus, the modal spectrum of the Goubau line contains at least two real poiats, hg, and
hyE,, ,» and an infinite number of complex points. All the points corresponding to axially
nonsymmetric modes are of double multiplicity (including hyg,, ), due to the symmetry of
the cross section.

The modes of the coaxial guide are also well known. The modal spectrum contains a
point Ar,i = k()2 at most finite number of real points corresponding to guided waves
and infinite number of imaginary points generating purely decaying modes. The same
considerations regarding degeneracy are valid, due to the symmetry of the cross section.

We must also take into account the modes of external domain of a circular perfectly con-
ducting cylinder. These are produced by zeros of Hankel! functions and their derivatives of
argument yb, known to be the complex values. In addition, there is one more point of the
spectrum h = & (coinciding with the branch point), which relates to the axially symmetric
T5 mode of the TEM type.

It must also be noted that in these guides there exist infinite numbers of azimuthal mode
families. By introducing a strip or a slot, we obtain only two families of modes, in the sense
of symmetry relating to the reference plane. It is convenient to denote them as E} /1]
and E7 /H} , dueto the even or odd character of longitudinal ficlds. A narrow strip or plot
perturbs degenerated points of the spectrum in a different manner for each of these families,
thus splitting them into two separate ones. But what is more important, a strip or a slot
produces a new mode as a point of the spectrum. For a narrow strip (4 # 0} there exists
the so-called strip mode of the E}/H family, with the constant of propagation given by

_ g[ln(¢/a) = Inéy] o i _
Hr, = kil \/Voz[ln(f/'a)—slnélj i b6 = sin(6/2)—0; Ul = (e+1)/2 . (1)

In a similar way, for any narrow slot (8 # 0) there exists a so-called slot mode of the
E7/#} family, with the constant of propagation given by

hie = K [U3 + (k)7 (1-a¥/69) 0 0] 5 By = sin(8/2)~0 . (15)

As & — 0, the strip mode field has [ H,| € {E;| < | f,, | E| showing the features of
both quasi-E and quasi-T type modes. It is also a principal mode without low-frequency
cutofl. In coatrast, the slot mode is of the quasi-H type, as &§ — 0, since it has |E;| &
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| Hel, | Hr|, | Et| and extremely low but finite cutoff frequency tending to zero.

Fig. 2 presents qualitative pictures of cross-sectional F-fields of all the modes mentioned
above, Both strip and slot modes are singular, since the former disappears from the spec-
trum if § = 0, while the latter, if § = 0. Al the other modes transform, in a continuous
way, from the modes of a Goubau line to the modes of a coaxial cable and its external
domain,

FIGURE 2: Mode field lines

4. NUMERICAL RESULTS

Here we present the results of computations of an iterative algorithm based on Newton’s
principle, applied to find the spectral points h;, approximated by the characteristic values
of the matrix I — A%, (h), with 4,7 =1,2 and |m]|, |n| < N,.

Fig. 3 shows the mode dispersion curves for a strip line with substrate parameters R =
a/b=10.5, £=225,and a narrow strip of angular width &§ = 1°. The singular quasi-T
mode (strip mode) dominates the whole range, especially in the low-frequency limit. The
wavenumbers of other principal modes have different behavior in the quasistatic region, but
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all of them are only slightly perturbed by the strip in comparison to Gouban line modes
{indicated by dashed lines). The perturbation is greater for the E}/JI7 family, being of
the order of 0{lu™! §) as § — 0, while the order of the E; /H} mode family perturbation is
0(6%). If the frequency of operation is higher than ke = 2, then all four principal waves are
competitive, even though the first higher order modes, I E3,, are still far below slow-wave
cutoff. Such a line evidently loses its quasi-single mode behavior, and strong coupling has
to take place between modes when scattering from inhomogeneities is present.

hir

1.4

L.3f

1.2

1.1f

1 L
0 1 2 3 4 5 k¢

FIGURE 3: Mode dispersion curves. ¢ = 2.2, a/6=05, —:6=1°%, ---:6=0°.

When the substrate thickness parameter R is smaller, as in Fig. 4, the range of the strip
mode dominating its behavior increases. In this case, we took the same line parameters, i.e.
R=109, £=232 and § =0.05,0.15, asin [3], and recalculated the wavenumber into
the effective dielectric constant £.q = (h/k)?. This gave us the possibility of comparing
our approach with those of [3] and [4]. [t turned out that, for the given strip widths (rather
narrow ones), both approaches are in excellent agreement, differing by no more than 1% in
the whole frequency range concerned. Wavenumbers of all the other principal modes are
much closer to unity, but the Goubau line mode Foq becomes competitive for ka > 10.
Note that only the dominant T3 mode is sensitive to the strip-width shift from § = 0.05
to § = 0.15 (the dashed line in Fig. 4).

K[k

1.5

1

0 1 2 3 4 5 6 7 8 9 0 %8

FIGURE 4: Mode dispersion curves. a/fb = 0.9, ¢ = 232. — :§ = 0.05 rad;
---:6 = 0.5 rad.
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Figures 5 and 6 show analogous curves for a slot line on the same eylindrical substrate for
the two substrate parameters R = 0.5 and 0.9, respectively. As the slot width is small,
they are similar to the same dependencies of coaxial cable modes (dashed lines). The only
exceplion is the singular quasi- Hgy mode (slot mode), which dominates at low [requencies
until it remains above cutoff. Note that the slot mode is less sensitive to the inner loading
of the guide than the other modes, because its nature is closely related to the slot itself. As
has already been pointed out, the glot mode is not a principal one. Below cutofl, it turns
into a leaky-wave mode in just the same way as all the other higher order modes. In the
quasi-static limit, only the principal modes — quasi-Ty and quasi-Tj¥ — are propagating
losslessly, but their phase constants differ from unity by less that 0.001% in the whole
range under consideration. The leakage constants of higher order modes below cutofl rise
slowly unti]l they equal the pliase constants, and then much more rapidly with decreasing
frequency.

Reh/k Reh/k
1.3} 1.3
1.2 1.2
1.1 11
1 1
0-5 0-5
0 0
1 1
2 2
3 T 3

imh/k ImhAfk

FIGURE 5: o/t =05, £=1223, FIGURE 6: a/b=09, £=2.25,

—:f0=1%. ---:8=0°. —_—_f=1%, ----:0=0".

Perhaps the most interesting results are presented in Fig. 7, whicl shows the transformation
of slot line modes into strip line modes as the slot is widened while the strip is narrowed.
Tlhe phase constants of all the slot-line modes decrease either monotonically, or after a small
local increase. Those which come close to unity demonstrate a sharp change of dispersive
behavior if the strip is narrowed further (compare with Fig. 4). This indicates a coupling
{within the same mode Jamily) with one of the principal modes of the guide that is much
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less sensitive to the strip/slot width relation. The manaer of this coupling is the same as for
modes in a partially screened circular dielectric core [5], [6]. Lf the strip is narrowed futther,
the principal wave transforms into a leaky one, strongly radiating into the surrounding free
space. The TEM wave of the coaxial cable transforms into a strip mode of the cylindrical
strip line, with the wavenumber reducing from ¢/ to ((5+1)/2)ll‘1 in a monotonic
manner.

hik

14
L3}
1.2
1.1

4+
H‘M"\

1 i 1 1 1 1
0V \20 40 80 "™SI00 120 140 160/ 0°
T;'*\ \QO N HEy

FIGURE 7: £=222, kbt=12, afb=0.4.

5, CONCLUSIONS

A mathematically correct full-wave method has been developed for the effective computation
of mode characteristics in a partially screened circular dieleciric core. This approach is
applied to the simulation of microstrip and slot lines on a coated cylinder. The initial
mode spectral problem is reduced to a homogeneous system of algebraic equations, with
an operator of the Fredholm system, second kind. This cnabled us to construct a highly
effective numerical algorithin and check the validity of the approach, based on the dynamic
Green’s function formulation of a circular cybndrical substrate {3], [4]. The latter turned
out to be quite accurate for the tested cases of narrow strips and low and middle frequencies.
Also, wavenumbers of all other principal modes, as well as some higher order modes, have
been computed, and the transformation of modes between circular microstrip lines and
analogous slot lines has been investigated.
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