A. l. Nosich

(Presented by Academician A. N. Tikhonov, May 1'7, 1986)
(Submitted June 11, 1986)

Dokl. Akad. Nauk SSSR 296, 326-331 (September 1987)

It is known that in the case of harmonic oscillations

(~e~tket Imk=0), the radiation condition is one of the
i principles for deriving a unique solution of Maxwell's equa-
i tions in an infinite domain,!™ 1If the boundaries extend to
infinity, then Sommerfeld's radiation condition! is inap-
plicable, For a hollow closed waveguide, the radiation
condition was derived by Sveshnikov.® For open wave-
guides, on the other hand, similar conditions have not yet
been formulated in explicit form, although in a series of
works the solution derived from physical considerations is
in agreement with the requirement for the "absence of in-
coming waves" and has yielded reliable results, The aim
| of the present work is the correct formulation of the radia-

i tion condition for an open waveguide, which extends the Som-
b merfeld and Sveshnikov's conditions to the case of un-
4 bounded space containing bodies and surfaces that are in-
' finite and regular along an axis (Fig. 1).

Definition 1, We shall examine a regular open wave-
guide of compact cross section which is formed by a finite
| number of continuous nonintersecting\ elements of three
v types: a) a dielectric cylinder of cross section D with a
| finite boundary 8D; b) an ideally conducting cylinder of
| cross section M with a finite boundary 8M;; and c) ideally
| conducting infinitely thin open surfaces of cross section
; 8M,. We shall designate aM =M, UdM,, M =M U dM, W' =M U
9D, We shall call the open waveguide described above the
waveguide W,

All components of the fundamental solution of Max~
well's equations {EG, HG} for the open waveguide W are
l uniquely determined in terms of two fundamental functions
! G&M(R, Ry) ={Ue,m, ve,m} the solutions of the following
; boundary-value problem,

Problem (G) By ‘
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Erlomx: =0 [Er]lypy,=0; [Hr 1l 5y, =0, )

JUKGI? +|grad G i?)du<e, VC & 3
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\_yhere qu . HS are the tangential components of the field,
De={c"16(R - Ry), 0}, DM = {0, 6 R — Ry}

Problem (G) is the problem of the diffraction of an
intrinsic field of a longitudinal electric or magnetic dipole
by the elements of the open waveguide W, To solve this
problem, we shall apply an integral Fourier transform

Go™R,Ro)=@my™ [ F2@E " (rros ke T an, (4)
K2(@)=k?e(r)—n?, by
where the integral is understood in the general sense,
since the functions % ™(r, ry; h) ={u®, M, v&, M} can have
singularities on the contour of integration,

The functions g% ™(r, ry; h) are called transverse
Green's functions, which are solutions of the following
boundary-value problem,

Problem (g):

[A+R2M]IZ™(r,t0; h)=—d®™(r,10); 1,00 ER\ W, (5)
where Imh=0, d®= {1 §(r— 1), 0}, and dM=1{0, b(r — 7o)},
with conditions of the type in Egs. (2) and (3) in the plane
of the cross section, In addition, by virtue of the compact-
ness of W C & in the limit r— o, the functions g% ™(r,
ry; h) necessarily are subject either to the condition of
exponential decay (for |h|> k) or to the Sommerfeld condi~
tion (for |h|< k). Following Sveshnikov® (see also Refs. 7
and 8), we shall write them in the form (we shall drop the
indices e and m since they are unimportant)

Frros= 2 2, H ke (o), 6

n=-—

2l u
where k =k? —h% Imh=0; Rex = 0, Imk = 0; and an={an,aﬁ .

The problem of determining G(R, R)) in ®® by way of
calculating the integrals in Eq. (4) leads to the need to
study g(h) as a function of the parameter h in the range of
its analytic continuation, It is easy to see that this region
forms a subset of the Riemann surface % of the function
Ln k(h), which is the region of analyticity of the fundamen-
tal solution of Eq. (5) in the absence of the waveguide W,
We shall designate 3¢ to be that ("physical") sheet of 1,
over the real axis of which Eq. (6) holds,

Applying the Gauss—Ostrogradskii theorem, known in
electrodynamics as the complex power theorem, to the
field in a cylinder of radius ry > a, where a is the radius
of the minimum circle surrounding the waveguide, we come
to the following assertion,
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Lemma 1,
values of the
Im h =0 and

There do not exist any eigen-
problem (g) for which heEd,,

4(RekRex+ImkImi) e M £ (15412 |02
n=—oo

#:—Sf [ImkH’+(RekIme+ImkRee)Ez]ds M

and (or)

4(RekImk—ImkRek)e 2'm*n 3 (lan 1* = 1ay [?)
: N = —oo (8)
ae_sf[(Rek Ree —Imk Ime) E* — RekH?] ds.

From Lemma 1 and from the fact that for e=1 the
problem (g) decomposes into two problgms;ﬁ and v, which
are independent,'relative to the scalar functions we find

Theorem 1, The boundary-value prob-
lem (g) has a unique solution in the follow-
ing cases: a) for all real h, if Im k > 0,
Ime =0; b) for all real h=xk, if Imk =90
.nd if either Im € > 0,or € =1 (h = =k are
branch points); ¢) for all real |hl < k, if
Imk=O.ImE=O,Re€#1.

The following fundamental result holds,

The transverse Green's
functions g ' (r, ry; h) of the open wave-
guide W exist, are analytic over h on the
segment |4 <k h€Xo, and permit analytic
continuation on the Riemann surface i, with
the exception of a set o (which is no more
than denumerable and symmetric relative
to 0) of isolated points, which are poles
of finite multiplicity, without finite cluster
points.

For an open waveguide, comprised of elements of
type b) and c¢) from definition 1, the proof of Theorem 2 is
a corollary of the result of Refs, 9 and 10. For elements
of type a), the same result can be obtained by investigating
tegral equations that are equivalent to problem (g) on
e basis of their Fredholm nature and analytic dependence
of the kernels on h.!2

Following Refs, 7 and 13, it can be established that
the residues of the transverse Green's function at the
points h € o, are equal, within a constant, to the eigen-
functions f (r, hg) of the homogeneous problem (g) with a
generalizec? radiation condition in the limit r —«, which
formally coincides with (6) for simple poles, with one dif-
ference that h, € X. It is easy to see that in this case (6)
allows an exponential increase as r—e, The functions
{Eq, Hq}, wlch are uniquely determined by the eigenvec-
tors fq(r, hq), will then describe the fields of the general-
ized natural waves of the open waveguide W, which cor-
respond to a discrete spectrum oy, of the propagation con-
stants h,

. 0
Definition 2, We shall designate o = U fiq: lh_g =~hg;

hy oy hq €1o; Imhg = 0l
constants of all . proper
guide W,

to be the set of propagation
natural waves of the open wave-
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It is obvious that in the limit r — fq(r, hg) =O[exp™!
(hfl'--kz)1 2r], such that there exists the finite number
Pf=c(8mRe [ [E, X H}]zeds, ' ®
a*\w
i.e., the average flux of complex power through the cross
section of the open waveguide,

Z(“m[é\‘hg«
Theorem 3, The principle of ftmite ab-
sorption for the derivation of a unique solu-
tion for the problem (g) is correctly applied

only if either ¢ =1, h#xk, or Ime >0, h#
*k, or [h|< k, or k does not belong to 5.
Otherwise, the limit of E(r, ry; h, k) for
Im k— +0 exists only in a class of general-
ized functions,

The proof of Theorem 3 is derived from Theorems 1
and 2, y

. Starting from Theorem 2, weshall now construct only
that fundamental Green's function G (R, Ry), which will b
in agreement with the requirement for the absence of
sources at infinity, and we shall prove its uniqueness,
Studying its asymptotic behavior as R— permits one to
formulate the radiation condition for an open waveguide,

For simplicity, we assume that all points op # ¢ are
simple and do not coincide with k. We apply the method
of steepest descents to the study of the integral in Eq. (4).
The following lemma, following from the results of Refs,
13 and 15, is also necessary,

Lemma 2, If hp, hy €0, p#q, then the fol-
lowing orthogonality relations hold:

[ [EgXH}]zods=0; S [Eq X H,]zeds=0.
R\ w v R\ w

(10)

<

Theorem 4, The boundary problem (QG)
has for Im k=0, Im ¢ = 0 a unique solution
in ®3, which satisfies for R =(r?2 +z2)1/2~
o the condition

oo n =
22 b m PR Y00, o
n=—o

mn -"'m
m=-n I

(11

G(R,Ro; k) =

o(l), r<r,

Q -
+ qEﬁlaqf*q (r,h)Tq(z2) (z20),

ry =max(ry, a); h{!)(x) are spherical Hankel
functions; Y(D) (6, ¢) are spherical angular
functions, orthonormal on the unit sphere;
hq uf-q (r, hq) are simple eigenvalues and
elgenvectors of the problem (g), such that

hqea,,, he #k fiq= lug, 750,15

Tq(@) =exp(ivghqlzl); v, =sign(P]). .

Proof by contradiction, It is necessary to use Gauss—
Ostrogradskii theommfor an electromagnetic field in the
reglon V (see Tig. 1), which is free of sources, and to
examine the limit as Ry—w, r;j—o, r,/R;— 0. Keeping in
mind the orthogonality of the Ygll) (6, ¢ functions and
Lemma 2 and studying the result in relation to its fixed
sign behavior, we find a contradiction.

Note that if the multiplicity of any pole is higher than
1, this can be easily allowed for by using the calculus of
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- of open resonators that are {oaded with.

residues, If any of the simple poles hp—k, then its con-
tribution needs to be evaluated by a modified method of
steepest descent,!

Thus, it is-necessary to add to a spherical wave that
satisfies the Sommerfeld condition [first term in Eq, (11)],
the superposition of proper intrinsic waves of the open
waveguide (second term). For each of the latter a partial
radiation condition can be posed for |z|— co:

dTy(2) ] . (12)
I, —-x'thqf‘q(z)=0, q=1,...,0, hg€aq,.

Condition (12) is similar to the Sveshnikov's condition’
for a hollow closed waveguide, It is different, however, in
that it has the value v, which reflects the fact that in the
open waveguide the intrinsic waves can have phase and
group velocities in different directions, Thus, in an open
waveguide it is insufficient to require the absence of in-
coming waves, rather, it is necessary to require the ab-
sence of waves carrying energy from infinity,

An obvious corollary of Theorems 3 and 4 is

Theorem 5, The principle of finite ab-
sorption yields a unique solution of the
problem (G), satisfying condition (11) in the
limit Tm k— + 0,

Using the same results as thoseused in proving Theo-
rem 4, we shall establish the validity of the following propo-
sition,

Theorem 6, For any fields {E,, H,}and
{E,, H,}, satisfying Maxwell's equations
and condition (11), the following relation
is satisfied, regardless of the complexity
of the complex number k:

lim $ {[E;X H;] —[E;X H;]} n,ds=0. (13)
R,—;n;rl—»w S
n/R,~0

Theorem 6 permits the construction of a solution for
the problem of the excitation of an open waveguide, i.e.,
problems of the type (G) with a finite right side, in the
form of convolutions with a fundamental solution deter-
mined by the functions G® MR, R;). In addition, Eq. (13)
permits applying Green's vector theorem to constructing
integral equations in the theory of diffraction of
intrinsic waves (traveling from z = ) by inhomogeneities
in an open waveguide of the screen and inclusion type,
compact in @3, Moreover, the fact that Eq. (13) is also
satisfied for all complex k, permits one to correctly formu-
late the problem of the spectrum of intrinsic oscillations
open wave-
guides, Such generalized intrinsic oscillations satisfy the
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homogeneous boundary-value problem of the type (G) with
the condition (11) for Imk< 0. In this case, Eq. (18) guaran-
tees the construction of equivalent integral equations, de-
spite the increase in the solution in the limit R— o,

In conclusion, we note that in the space of two mea-
surements of &?, the analog of condition (11), for r=(y%+
Z2)1 2 w, is

£ aHwnem?, y>y,
Y izl
+ 2 aquq(y,hq)e q
o(1), y<n 7=1
. (14)
brcicwok
Here it is assumed that there are no wafflesied waves
in this case, v_ =1, Using Eq. (14), we can generalize
radiation condi%ion (11) to an open waveguide with regularly
noncompact cross section, To do this, it is necessary to
construct a transverse Green's function g(r, rg; h), replac-
ing condition (6) by condition (14). In addition, all of the
radiation conditions studied above can be generalized as
well for a regularly periodic open waveguide,

The author is deeply grateful to professor V. P, Shes-
topalov for his-interest in this work.
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