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It is well known in acoustics that for a rigid sphere
with a small hole there exists a resonance frequency in
the longwave range,'” at which the amplitude of the oscil-
lations inside the cavity and also the total and the back
scattering cross sections increase sharply. In this scat-
tering regime the sphere with a hole is called a Helm-
holtz resonator.!

The analog of the Helmholtz resonator can be real-
ized also in electrodynamics, for example, in the form of
a metallic cylinder with a longitudinal slit.

In the present communication it is shown by a rig-
orous method’’ that in the diffraction of a plane H-polar-
ized electromagnetic wave at a circular cylinder with a
slit for certain values of the frequency in the longwave
range the scattering cross sections behave in the same
way as in the case of an ordinary Helmholtz resonator.’

Let a plane wave be incident on a cylinder of radius
a with an infinite longitudinal slit of angular dimension
29 oriented in the direction ¢, (Fig. 1). The field scat-
tered by the cylinder, which must satisfy the Helmholtz
equation, the Neumann boundary conditions, the radiation
condition, and the condition of finiteness of the energy in
any volume in space, can be expressed in the form of the
potential of a double layer distributed along the surface
of the cylinder with current density p(e):
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where k=w/c, p={r, ¢}, p.={a, ¢.}=L , L is the contour of
the transverse section of the cylinder, dlg is the arc
element of the contour L, ¥ is the normal to the contour,
and Hsi)(x) is the Hankel function of the first kind.

Using the Fourier series expansion of the function
u(w) and subjecting the field (1) to the boundary conditions
we obtain a system of paired summator functional equa-
tions of the first kind with the kernel in the form of trig-
onometric functions involving the Fourier coefficients
of the current density p,,:
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It is well known that functional equations of the first kind
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An eleétromagnetic analog of a Helmholtz resonator
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FIG. L. The total scattering cross section of a cylinder with a slit as a
function of the frequency. ¢p = 180° The digits on the curves denote

the values of g in degrees.

of type (2) are unsuitable for analytical or numerical
determination of the unknowns u,,. However, Egs. (2) can
be regularized. For this purpose it is necessary to have
a linear operator determined by the left-hand sides of
Egs. (2), to separate it into the principal and completely
continuous parts, and then invert the principal part using
the rigorous method cf the conjugation problem.“ This
results in an infinite system of linear algebraic equations
of the second kind, which is equivalent to (2):
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W.(~u), V24 (—u) are defined in Ref. 4;

The matrix operator of system (3) is a Fredholm
operator‘; therefore, in the case of arbitrary parameters
of the problem the coefficients p, can be determined by
the method of reduction without any additional justifica-
tion,

Furthermore, in the region of our interest ke « 1
system (2) can be solved by the method of successive
approximations, which follows from the estimate of the
canonical norm of its matrix

gmmax ¥ |Anal <C(ka)[ (1—u) +71-u"],
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Taking q < 1, in the zero-order approximation for the
Fourier coefficients of u(p) we get
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A computation of the surface current density u(g)
Using the results of analysis of free oscillations in a cyl-
inder with a slit® shows that in the region ka<1, |In='0| <1,
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The current (5), induced by the plane wave in the

S ‘ cylinder with a slit, is small at all frequencies except the

this is a misprint; see denominator of (4) for the
correct formula; this journal did not send proofs

(6)

" resonance frequency
koa= (%n sin 1/20) =40 (In~" sin '/28),

at which it increases in order of magmtude to O[ (kea)~'],

4<{. This results in a sharp increase of the energy
characteristics of the scattered field determined by it,
i.e. of the total (¢g) and back (op) scattering cross sec-
tions, givenby the formulas

. -
0.=~Re )\ uninl’ (ka), ob—— Z (=) () |

M= — oo M= —co

Q)

The frequency dependence of the total scattering cross
soction computed by the method of reduction from the solu-
tion of system (3) is shown in Fig. 1. It has a well-defined
rosonance character, It follows from (4), (7) that at the
rosonance frequency (6) we have
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Thus, on a metallic cylinder with transverse dimen-
sions small compared to the wavelength it is sufficient
to cut a slit of the resonance width [in accordance with
(6)] in order to obtain a substantial increase in the effec-
tive electrodynamic dimensions of the cylinder. For ex-
ample, for a slit of width 2 = 10°, the energy reflected
from the cylinder in the direction to the source at reso-
nanceis 30 times greater than from a continuous cylinder
of the same dimensions, In other words, whereas the
continuous cylinder is practically "invisible™ in this wave-
length range, a cylinder of the same diameter with a slit
is a very significant obstacle for an H-polarized electro-
magnetic wave.

We note that according to (5), (6) the resonance fre-
quency has a strong dependence on the width of the slit 6
and tends to zero for § — 0, but has a weak dependence on
the angle of orientation of the slit ). The maximum
values of the scattering cross section at resonance (8)
also have a weak dependence on ¢,. (This dependence is
contained in the terms proportional to O[(ka)?].) These
characteristics are obviously accounted for by the long-

~wave nature of the phenomenon in question. For the same;

reason the scattering of the incident field is almost iso- ! !
tropic. As regards the field in the near zone and inside -
the cylinder, at the resonance it has the form shown in

Fig. 2. The electric field (parallel to the lines H, = const)
is concentrated at the slit, and the magnetic field is maxi-
mum inside the cylinder, in the same way as in the acous-
tic Helmholtz resonator the kinetic energy of the acoustic

. oscillations is maximum at the aperture and the potent1a1

energy of compression is maximum in the cavity. In fact
it can be shown that in the present case the single nonzero
component of the magnetic field Hz plays the role of the i )

- potential function for the electric field. Furthermore, the |

fields have a relative phase shift of 7/2,

The fact that the resonance electric and magnetic
fields are successively concentrated in different bounded
regions. makes it possible to regard the cylinder with
the slit as a high Q circuit with lumped parameters, The
edges of the slit play the role of the capacity, while the
walls of the cylinder play the role of the inductance.

An analysis of the equiphé.se lines and the lines of
the mean energy flux averaged over a period near the
cylinder with a slit (Fig. 3) shows that at the resonance
frequency the phase front of the incident wave is highly
distorted; phase nodes appear, in whose vicinity energy

FIG. 2. Structure of the resonance field. Lines Hz = const for ¢ = 180°,
g =5°, ka = 0.375. )
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FIG. 3. Equiphase lines (dashed lines) and lines of mean energy flux near

the cylinder with slit in the resonance and nonresonance case. 1) kg =0.375,

6 =5% 2) ka=0.6,6 = 5% 3) ke = 0.375, 6 = 0.

circulation occurs along closed trajectories. Inside the

cylinder the energy flux averaged over a period is zero,

since in the regime of stationary oscillations the energy
is only stored successively in the form of the electric )
field around the slit and in the form of the magnetic field
inside the cylinder,

The phenomenon investigated here is clearly distin-
guishable even for very wide slits (Fig. 1); however, it
loses its longwave character. For example, for 6 = 90°,

the fact that approximately one half-wavelenth of the -~
incident wave is contained in the arc length of the trans-
verse section of the half cylinder,’

In conclusion we note that the resonance regime of
the cylinder with the slit, described above, is all the more
interesting in view of the fact that the electromagnetic
analog of a Helmholtz resonator does not exist for the
classical structure in the form of a sphere with an aper-
ture. This is a consequence of the vector nature of the
electromagnetic oscillations,
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One of the urgent problems whicharosein Boltzmann's
investigations is the resolution of the following ques-
tion: Can physical processes which are quite definitely
"stochastic" in nature be explained within the framework
of a dynamic description without involving additional hy-
potheses using the ideas of probability theory? Interest
in this problem has recently been especially strengthened,
as can be explained on the one hand by modern advances
in those areas of the qualitative theory of multidimen-
sional systems which are based on the coarseness con-
cept and on the other hand by the construction of new
dynamic models of real processes which cannot be referred
to traditional problems of the theory of vibrations since
they have, in principle, new kinds of motions — homoclinic
Poincaré curves. The mere existence of a homoclinic
curve, involving the existence of a countable set of periodic
motions, a Poisson-stable continuum, ete.,!*? still does
not denote "stochasticity™: It is necessary that homo-
clinic curves enter into attracting sets, the so-called
"strange attractors." Hence, the problem of the mathe-
matical structure of attractors occurs naturally, since
the question of the adequacy of a model for a physically
observable stochastic process is related to them namely.
It is known from the theory of hyperbolic sets that Y-
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systems, Williams solenoids, etc., can be strange attrac-
tors in coarse systems, However, the possibility of their
appearance in model systems still remains problematical,

The purpose of this paper is to solve this problem in
two specific cases which occur in hydrodynamics and non-
linear optics., The first model is associated with an at-
tempt to explain the turbulence phenomenon of convective
fluid motion by using the system

i=—0(z—y), y=—zztrr—y, i=zy—bz, (1)
derived by Saltzman® from the Navier— Stokes equations
by using a Galerkin procedure. Lorenz! detected the non-
periodic nature of the trajectoriesl) in this model by com-
puter computation,

The second model,
i=—ys(z—y), J=r:(zz—y), i=—1(z—2) 1 (2—1)zy, (2)
has been constructed to explain the generation of vibrations
in a laser (see the survey, Ref. 6). Hence, it is interest-
ing to note that despite the distinct physical nature of the

problems under consideration, the systems (1) and (2)
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