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Abstract The problem of monochromatic electromagnetic wave 

diffraction by a perfectly electrically conducting (PEC) surface of 

rotation located in free space is investigated. The problem is 

reduced to sets of hypersingular and singular integral equations, 

which are solved by the method of discrete singularities using 

interpolation type quadrature formulas. From the solutions of 

these sets of equations the electric field and the far-zone patterns 

are obtained. The method presented has guaranteed convergence 

for a non-axially symmetric primary field. Using this method the 

Transportable Atmospheric Radar system (TARA) is considered. 

Keywords: diffraction, singular and hypersingular integral 

equations, interpolation type quadrature formulas 

I.  INTRODUCTION 

Among the works on the diffraction of electromagnetic 

waves by perfectly conducting rotation surfaces the papers [1, 

2, 3] are of particular note since, by analytically taking into 

account the axial symmetry of a perfectly conducting rotation 

surface, the three-dimensional diffraction problem is reduced 

to solving a set of one-dimensional integro-differential 

equation systems. This significantly decreases the order of the 

discrete model matrix when compared to an arbitrary three-

dimensional diffraction problem which typically leads to a 

two-dimensional system of equations. 

The radiation pattern of the large parabolic reflectors of 

the Transportable Atmospheric Radar system (TARA), 

developed at Delft University of Technology, has been 

simulated in [4], using the method of moments. However the 

authors use the method of moments with a Rao-Wilton-

Glisson(RWG) basis function, and therefore have to deal with 

large matrix size. Moreover, the convergence of their method 

is not proven rigorously. In the present paper the problem is 

numerically simulated using interpolation-type quadrature 

formulas with theoretically proved convergence. The 

calculation time of the present method is several hundreds of 

times less than in [4]. 

 

II. DIFFRACTION BY OPEN ROTATION SURFACE 

Let us consider the diffraction by a PEC surface of 

rotation. Represent the total field as a sum of incident and 

scattered fields: 0totE E E= +
� � �

. The scattered field satisfies 

Maxwell’s equations and a Sommerfeld radiation condition 

outside the surface, the Meixner edge condition, and PEC 

boundary conditions on the surface of rotation. The problem is 

solved using the rigorous theory of singular and hypersingular 

integral equations (IEs)[5-7].  

We reduce the problem of electromagnetic wave 

diffraction by a rotation surface to a set of one-dimensional 

hypersingular and singular IEs with variable coefficients. 

These IEs are solved by the Nystrom-type method, using 

interpolation-type quadrature formulas [8]. From the solutions 

of these IEs the scattered electric field is obtained.  

Almost all calculation time in this method involves 

calculation of the Modal Green Function (MGF). A lot of 

effort has been put into evaluating MGFs [9-18]. Each of these 

authors presents a method to calculate the MGF in some 

domain of parameters. However all these methods depend on 

wavenumber, and the convergence rate decreases if the wave 

number increases. In the quasi-optic case the MGF is an 

integral with a rapidly oscillating integrand and therefore these 

methods work slowly. We develop a formula, which does not 

depend on wavenumber and has an exponential convergence.  

 

III. SERIES FOR MGF CALCULATION 

In the quasi-optical range the unknown current densities 

have many oscillations on the reflector surface. This calls for 

high order discretizations. To reduce the calculation time it is 

necessary to develop faster numerical methods to calculate the 

matrix elements. The calculation of the MGF (1) placed in the 

IEs and its first and second derivatives takes almost all the 

calculation time in the methods [5-7,9-18].  

Let C  be a rotation surface contour. If t  is the integration 

variable on C , we will use cylindrical coordinates notations 

like 
0 0 0 0

( ),   ( )t z z tρ ρ= = , while for the observation point the 

notations will be ,  zρ  and we define the MGF function: 

 

 
( ) ( )

2

0

exp
cos ,M

ikL
S M d

L

π

ψ ψ
−

= ∫  (1)  

where ( )22 2
0 0 02 cosL z zρ ρ ρρ ψ= + − + −  (2) 

 

Substitute the integration variable in (1): 
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After computations, we have: 
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where  

( )( )max minexp 2 ,C ik L L= − +  ( )max min 2k L LΩ = −  

( ) ( )( ) ( )( )min maxMf u T g u u L L u= + +  

( ) ( ) ( )min max1 1 2u x L x L x= − + +    

( ) ( )( )22 2 2
0 0 02g u z z uρ ρ ρρ= + + − −  

( ) ( )2 2

min 0 0L z zρ ρ= − + − , ( ) ( )2 2

max 0 0L z zρ ρ= + + −  

 

Further we consider the case min 0L ≠ . If min 0L =  then 

the kernels in the IE have finite limits, which are calculated 

using the asymptotic behavior of the MGF [12]. 

Note that the function ( ) ( )( )f x f u x=  is infinitely 

differentiable and has not any oscillations. Therefore it can be 

interpolated with low interpolation order ( ) ( )1nf x f x−≈ . 

Any infinitely differentiable function can be expressed in the 

form of 
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where ( )kT x  is the Chebyshev polynomial of the first kind. 

Using the formula [19, p. 850]: 
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we obtain the expression for MGF in the form of series: 
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Because of the infinite differentiability of the function 

( )f x , the components of series (8) tend to zero with an 

exponential rate. 

Let us evaluate the number of terms we need to calculate 

in the series (8). This problem is equal to the definition of the 

degree of the interpolation polynomial which interpolates the 

function ( )f x  with satisfactory relative error. Because of the 

factor ( ) ( )( )min1g x u x L= +  the function f  has large 

derivatives in the case of small minL . To find the degree of the 

interpolation polynomial, which interpolates the factor g , we 

find it exactly for function ( ) ( )( )min1g x u x L= +ɶ . We have 

proved that an interpolation polynomial of degree : pp b ε<  

interpolates ( )g xɶ  with relative error ε  , where 
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For sufficient error it is found necessary to calculate first 

5n p M= + +  items in the series (8).  

To calculate the coefficients pa  we use quadrature 

formulas [8]. 
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where ( )( )cos 2 1 2
n
pt p nπ= + , 0,1.. 1p n= −  - the roots 

of the first kind Chebyshev polynomial. Because of the 

infinite differentiability of the integrand in (6) the quadrature 

formula (10) has an exponential convergence. 

Note that ( )pJ Ω  quickly tends to zero if p > Ω . We 

prove that it is enough to take 5
2

e
p = Ω + . 

The use of the Fast Fourier Transform (FFT) can decrease 

the calculation time of pa in (10). We use the FFT to calculate 
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The series for the first and second derivatives of the MGF 

are derived in an analogous manner. However we need to find 

an interpolation polynomial degree, which interpolates the 

second and third powers of the factor ( )g x . For this purpose 

we use the expression [19, p. 380]; 
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In the case of small minL  ( min 02, 2L k kρ ρ⋅ < ⋅ ⋅ > ) it is 

found better to use the series presented in [12, p.236]. 



IV. TRANSPORTABLE ATMOSPHERIC RADAR (TARA) 

Consider the real-life reflector antenna TARA. One of the 

major antenna design requirements is a very low level of the 

sidelobes around 90 degrees- less than -70 dB. The TARA is 

used for studying atmospheric phenomena such as clouds, 

precipitations and clear air turbulence. It consists of a 

parabolic reflector and a conical shield. The shield decreases 

the radiation sidelobes in the direction that is orthogonal to the 

axis of rotation and near to it. Fig. 1 shows the cross-sectional 

geometry of TARA. The parabolic reflector has a diameter 

2D f= of 33 wavelengths (3 meters) and the shield has a 

width L  of 22 wavelengths (2 meters) and angle of inclination 

0
ϕ  of 30 degrees. For modeling the TARA in the transmitting 

case the feed is simulated using a Complex Huygens Element 

(CHE) in the focus of the parabolic reflector. For modeling the 

TARA in the receiving case we consider plane wave 

diffraction by a shielded paraboloidal reflector.  
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Fig. 1. The cross-sectional geometry of TARA 

 

The CHE is a convenient simplified model of a realistic 

corrugated-horn or horn-lens antenna. Its field function has 

some parameter “b” that is formally the imaginary part of the 

source location point.  
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Fig. 2. The total far-zone radiation patterns of a stand-alone paraboloidal 

reflector illuminated by HE and CHE with the optimal parameter in the H-
plane (top) and in the E-plane (bottom) 

If b = 0 then the field function coincides with the field of 

the classical Huygens Element (HE) which consists of 

orthogonal to each other elementary electrical and magnetic 

dipoles. As known, HE has fixed directivity. If b is increased, 

then the directivity of such a modified source can be made 

larger and, correspondingly, the reflector edge illumination 

lower. Therefore such a feed is convenient for simulating the 

incident fields in the modeling of reflector antennas.  

In Fig. 2 we demonstrate the far-zone radiation patterns of 

the TARA parabolic reflector without conical shield 

illuminated by the CHE with optimal parameter “b” (that 

which gives the largest directivity) and by the classical HE in 

the E- and H- planes. One can see that the paraboloidal 

reflector illuminated by the CHE has lower sidelobes than the 

one illuminated by the HE.  

In Fig. 3 we visualize the near-zone field of the parabolic 

reflector illuminated by the HE in the E- and H-planes on a 

logarithmic scale. All patterns are normalized by the same 

value.  
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Fig. 3. The near field of the paraboloid illuminated by a HE for 2D f =  

and 33D λ=  in the H-plane (left) and the E-plane (right) 

 

 In Fig. 4 we visualize the near-zone field of the parabolic 

reflector illuminated by the CHE with the optimal parameter 

in the E- and H-planes in logarithmic scale. All patterns are 

normalized by the same value.  
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Fig.4. The near field of the paraboloid illuminated by a CHE with the 

optimal parameter 2.37kb =  for 2D f =  and 33D λ=  in the H-plane (left) 

and the E-plane (right) 

 

The method considered needs contour smoothness. But 

our numerical experiments show that the far-zone patterns for 

the actual TARA contour and for a TARA contour smoothed 

by splines are almost equal. 



In Fig. 5, the H- and E-plane far-zone radiation patterns of 

a TARA paraboloidal reflector without the conical shield and 

the full TARA system are compared on a logarithmic scale. 

One can see that in the direction which is orthogonal to the 

axis of rotation (90 degrees), and near to it, the TARA 

radiation pattern has sidelobes lower than for the parabolic 

reflector alone by some 20 to 30 dB. The CHE here was taken 

in such a way that it provided the maximum directivity for the 

stand-alone parabolic reflector. 
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Fig. 5. The total far-zone radiation patterns of the TARA parabolic 

reflector without the conical shield and full TARA system in the H-plane (top) 
and in the E-plane (bottom) 

In Fig. 6 we show the near-zone field of the full TARA 

illuminated by the optimal CHE in the E- and H-planes on a 

logarithmic scale. The 0| / |totE E
� �

 of the full TARA 

illuminated by the plane wave in the E- and H-planes is shown 

in Fig. 7. 
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Fig.6. The near-field of the full TARA illuminated by the CHE with the 
optimal parameter in the H-plane (left) and the E-plane (right) 

 

In Fig. 7 we can see an interesting phenomenon that 
escapes geometrical-optics descriptions. In addition to the main 
focal spot (area of the field concentration) there is another split 
“focus” near the paraboloid top. The latter areas of the field 
concentration appear because of the combined diffraction by 

the conical shield and paraboloidal reflector. The distance 
between the geometric focus of the paraboloid and the splitting 

focus is 15.51dist λ=  (the distance between the top of 

paraboloid and the splitting focus is 0.99λ ). 
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Fig.7. The near-field of the full TARA illuminated by the CHE with the 
optimal parameter in the H-plane (left) and the E-plane (right) 

 

Let us now place the Huygens element in the splitting focus 
location and compare the far-field patterns of the shielded 
paraboloidal reflector TARA and a stand-alone paraboloidal 
reflector illuminated by this element in Fig. 8. 
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 Fig. 8. The total far-zone radiation patterns of the shielded paraboloidal 
parabolic and a stand-alone paraboloidal reflector illuminated by a HE placed 
in the splitting focus location in the H-plane (top) and in the E-plane (bottom) 

 

The TARA directivity can be improved, and the length of 
the conical shield can be reduced by half a meter, by changing 

the shield inclination 
0

ϕ  from 30 deg to 5 deg. In Fig. 9 we 

compare on a logarithmic scale the far-field pattern for a 
shielded paraboloidal reflector with an inclination angle 

0

0
5ϕ = , 1.5L m= with the real TARA( 0

0
30ϕ = , 2L m= ).  

From Fig. 9 it follows that the shielded paraboloidal 

reflector with 0

0
5ϕ = satisfies the major antenna design 

requirement on sidelobes referred to above. 
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Fig. 9. The total far-zone radiation patterns of the TARA in the H-plane 

(top) and in the E-plane (bottom) for 0

0
5 , 1.5L mϕ = =  and 0

0
30 , 2L mϕ = =  

It should be noted that the directivity for the shielded 

paraboloid with 0

0
5ϕ = , 1.5L m=  is larger than for TARA 

( 0

0
30ϕ = , 2L m= ). 

CONCLUSION 

This paper improves on the method reported in [5-7] to use 

it for two-reflector quasi-optical antennas. For this purpose we 

derived an exact series form for the MGF. The terms in the 

series tend to zero with an exponential rate and calculation 

time doesn’t depend on the wavenumber value. The use of 

these series meant that we were able to investigate the 

electrically large TARA using a PC. To model the TARA feed 

we use a CHE with an optimal parameter. Because of this it is 

necessary to calculate only one system of 1-D hypersingular 

and singular integral equations in the method [5-7]. This 

system corresponds to the first azimuthal harmonics of the 

current density components.  

We consider the far-field of TARA and the calculation 

time is hundreds of times faster than an MLFMA-MoM 

algorithm [4]. Because of the efficiency of the method, we 

were able to investigate the near-field of TARA in 

transmitting and receiving cases. 

An interesting physical fact was observed that escapes 

geometrical-optics descriptions: In addition to the main focal 

spot (area of the field concentration) there is another split 

“focus” near the paraboloid top. 

In addition, elementary numerical optimization of the 

TARA paraboloid plus shield antenna has been performed. It 

showed that the directivity can be improved and the length of 

the conical shield can be reduced by a half meter by changing 

the shield inclination from 30 deg to 5 deg. 
Using the rigorous theory of integral equations with a 

Nystrom-type discretization offers many opportunities, not 
only in reflector antenna design. One can find a lot of 

applications in the diffraction by dielectric bodies, and 
eigenvalue problems for dielectric bodies. Therefore as a future 
step we propose to further improve the method of [5-7] to 
investigate dielectric bodies of revolution. 
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