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1. Abstract

On the rugged terrain of today’s computational ¢lectromag-
netics, the universal rope-way of MoM and industrial rock-climb-
ing with FDTD electric hammers are necessary technologies.
However, & free-style solo climb at the Everest of analytical regu-
larization is still a fascinating achievement. Here, we discuss the
foundations and state-of-the-art of the Method of Analytical
Regularization (also called the semi-inversion method). This is a
collective name for a family of methods based on conversion of a
first-kind or strongly-singular second-kind integral equation to a
second-kind integral equation with a smoother kernel, to ensure
point-wise convergence of the usual discretization schemes. This is
done using analytical inversion of a singular part of the originai
equation; discretization and semi-inversion can be combined in one
operation. Numerous problems being solved today with this
approach are reviewed, although in some of them, MAR comes in
disguise.

2. Introduction

hree different IEEE periodicals, dealing with closely retated

problems, have come out of the printers almost simultane-
ously: IEEE Transactions on Antennas and Propagation, 45, 3,
1997 (“Special Issue on Advanced Numerical Techniques in Elec-
tromagnetics™); Computational Science and Engineering, 4, 1,
1997; and IEEE Antennas and Propagation Magazine, 39, 1, 1997.
This made possible a comparison of the trends and efficiency crite-
ria of mumerical methods in computational electromagnetics
(CEM), on the one side, and micro-electro-mechanical systems
(MEMS) and fluid dynamics, on the other side. Although the
opening paper in the Transactions [1] is an entirely mathematical
esgay on integral equations in Sobolev spaces, in my opinion, this
special issue leaves no doubt that in CEM, finite-difference and
finite-clement methods, combined with genetic algorithms when it
comes to optimization, are rapidly taking over integral-equation
analysis. Meanwhtle, a systematic study of accuracy, not to talk
about the comparative costs of different convergent schemes, Is
still not a primary concern, in visible contrast with fluid dynamics
[2] and MEMS [3]. Even such a trivial remark as that of [2]-that
when talking about numerical accuracy, it is necessary to use a
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relative norm of error as a function of, say, the nuimber of mesh
points, and to display it on a logarithmic scale to show clearly the
range and the rate of convergence—seems to still not be a common
practice of CEM publications. On the other hand, in MEMS,
intrinsic limitations of finite methads are so clearly understood [31
that serious academic and commercial efforts are made to use
improved boundary-integral-equation formulations wherever pos-
sible. In view of this, it seems that the fellowing review of an
alternative CEM experience may be useful.

Together with fluid dynamics, MEMS, and some other
neighboring fields of engineering science, applied electromagnetics
today is closely tied to progress in computer-aided modeling.
Technelogiss for fabricating antennas, microwave circuits, and
sources have developed rapidly, but this is not so with computa-
tional tools enabling quick desktop design and optimization.
Inadequate simulation tools still force engineers to resort to costly
physical prototyping, which may take weeks, or to rely on intui-
tion. Meanwhile, an aggressive design strategy towards devising
really “smart” antennas and circuits—multi-element, high-perform-
ance, and low-cost—calls for both faster and more-accurate algo-
rithms. In the CEM community, this double challenge seems still
not to be recognized, and what is paid attention to are usually only
the tradeoffs between the efficiency (i.e., the computation time and
memory) and versatility of a solver. The only, but remarkable,
exception seems 10 be the design of complicated waveguide cir-
cuits (filters, diplexers, multiplexers, transitions, etc.), where the
accuracy of the numerical modeling of each elementary resonant
discontinuity is crucial for the design of the whole circuit [4-6].

The performance of antennas and many other microwave
devices has to be analyzed in-large or infinite domains. This leads
to finding solutions to exterior problems for the electromagnetic
fields and waves; additionally, in many applications, simulating the
time-harmonic-field performance is crucial. Thus, one comes to
wave scattering and radiation analysis based on the time-independ-
ent Maxwell and Helmholtz equations, in open domains. Although
it 1s possible to solve them by using finite-difference discretiza-
tions of the partial differential equations, associated problems of
domain fruncation, “good” exterior meshing, and solving enormous
matrices are hardly compatible with high accuracy. To avoid these,
boundary-element and Green’s function methods can be used,
applied to integral-equation formulations. Of the advantages, two
main points are to be emphasized: the radiation condition is auto-
matically taken into account, and only the boundaries need to be
discretized. However, this frequently generates ill-conditioried
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dense matrices, and so something should be done to adapt these
formulations to meeting the combined challenge of the speed and
accuracy of computations. Many textbooks and journal papers on
computational electromagnetics deal with first-kind integral equa-
tions for determining the surface or polarization currents of two-
dimensional and three-dimensional metallic or dielectric scatterers,
respectively, given the incident field. Such equations are obtained
from the boundary conditions, and normally have logarithmic or
higher-order singular kemnels. They are further discretized for a
numerical sclution by using subdomain (collocations) or entire-
domain basis functions. Although this commonly brings meaning-
ful and usefu! resulis, unfortunately, there are not any general theo-
Iems proving convergence, or even the existence of an exact solu-
tion, for such equations [7]. A rule-of-thumb of taking at least 10
mesh points per wavelength 1s only a rule-of-thumb, and by no
means does it guarantee any number of correct digits.

A good demonstration of what may sometimes happen to
such algorithms is given in [8]. By the simple example of two-
dimensional plane-wave scaitering from a tubular circular cylinder,
it is shown that the Moment-Method and FDTD soclutions can be
1000% or more in error in a typical resonant situation. The “pain
points” of the conventional Moment-Method approach have been
excellently reviewed in [7]; since then, essentially nothing has
changed. The final statement of [7] is worth reciting: “It is mis-
leading to refer to the result as solution when in fact it is numeri-
cal approximation with no firm mathematical estimate of nearmess
to solution.” Mathematically, if the corresponding integral operator
is viewed as a mapping between certain Sobolev spaces, the exis-
tence of a solution and the convergence of standard discretization
schemes for some of the first-kind equations can be shown. (A
Sobolev space has a scalar product and norm defined through both
the function and its gradient; in electromagnetics, such a norm is
easily identified with power.) Uniqueness is normally guaranteed
by a sufficient set of boundary, edge, and radiation conditions. A
simple example of this sort is the logarithmic-singular integral
cquation in the two-dimensional E-wave scattering from a PEC
(perfectly electrically conducting) fiat strip. However, in a practical
sense this is not a great deal, as the condition number grows with
the number of equations [9], thus making the matrix impossible to
solve for an accuracy better than several digits and a scatterer
greater than 10-20 wavelengths. Nearly the same can be said of the
discretization of second-kind equations having strongly singular
kernels. Although it is possible to eliminate ill-conditioning by
using specialized discretization schemes, based on Sobolev-space
inner products [1], this appears to have a limited range of applica-
tion.

Meanwhile, there exists a general approach to obtaining sec-
ond-kind integral equations of the Fredholm type, with a smoother
kernel, from first-kind equations. Discretization of these new
equations, either by collocation or by a Galerkin-type projection on
a set of basis functions, generates matrix equations the condition
number of which remains small when the number of mesh points
or “impedance-matrix” size is taken to be progressively greater.
The approach mentioned is collectively called the Method of Ana-
Iytical Regularization (MAR). The term has apparently been intro-
duced by Muskhelishvili [10]; sometimes semi-inversion is used as
a synonym. [t is based on the extraction and analvtical inversion of

a singular part of the original full-wave operator; however, in prin-

ciple, it is possible to make a partial inversion numerically. It must
be admitted that the whole idea of MAR can be traced back to the
pioneering work of the founders of singular-integral-equation the-
ory, Hilbert, Poincaré and Noether, well before the first appearance
of a computer.

3. Foundations of MAR

The formal scheme of MAR is deceptively simple, and works
as follows. Assume that the boundary conditions generate a first-
kind integral equation. In operator notation, this can be written as

Gx=v, (1)

where X and ¥ stand for the unknown and given function, respec-
tively. In wave-scattering problems, a direct analytical inversion of

G js normally not possible, while a numerical inversion, as has
been mentioned, has no guaranteed convergence. Split operator G
into two parts: G = G, + éz . Assume now that the first of these has

a known inverse, ;. Then, by acting with this operator on the
original equation, one obtains a second-kind equation:

X+AX =8, (2)

where A=G'G, and B=G'Y. However, this scheme is
mathematically justified only if the resulting operator equation is

of the Fredholm type. This means that the operator 4 must be
compact on a certain Hilbert space H (i.e., must have a bounded

norm | 4], <o), and the right-hand side vector B must belong to
the same space H. This inherently implies that the inverted opera-

tor Gl is singular, while G, is regular. Then, all the power of the
Fredholm theorems generalized for operators [10-12] can be
exploited, proving both the existence of an exact solution,

X=(I +A)7! B {[ is the identity operator), and the point-wise
convergence of discretization schemes in H, without resorting to
residual-error estimations like for first-kind equations [1, 7).
Indeed, suppose that we have discretized the second-kind equation,
Consider its “truncated” counterpart,

XM a¥x¥ =5, (3)

the matrix 4Y for which is filled with zero elements off the
NxN square. It ts easy to show that the relative error, by the
norm in H,

ARt TR
e(N)= s”(uA) MA*A I @)
BY.
is destined to go to zero with N — <o, as the first factor in the
right-hand part above is a bounded constant, while the second is
decreasing. Of course, in finite-digit arithmetic, this decrement is
limited by the machine precision. The rate of decay of the function

e(N ) determines the cost of the algorithm, and this can be differ-

ent for different ways of selecting the invertible singular part, Gl .

Here comes a key question: how to select the operator Gl It
is apparently possible to point out at least three basic principles for
extracting an invertible singular part of the original operator. These
are extracting the stafic part (Laplace equation theory is simpler
than the Helmholtz theory, and sometimes associated boundary
problems can be solved analytically); extracting the high-frequency
part (in faci, this is about half-plane scattering, which can be
solved by the Wiener-Hopf method}; and extracting the frequency-
dependent part corresponding to a caronical shape (which is either
a circle, in two dimensions, or a sphere, in three dimensions, solv-
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able by separation of variables). A note can be made that a half
plane is also a sort of canonical-shape scatterer, but it has an infi-
nite surface in terms of any length parameter, including the wave-
length.

Although inversion of the static or high-frequency part seems
to be based on quite specialized functional techniques, if is useful
to point out one general feature in all the above cases. If it is possi-
ble to find a sef of orthogonal zigenfunctions of the separated sin-

gular operator G,, then the Galetkin-projection technique, with
these functions as a basis, immediately results in a regularized dis-
cretization scheme (i.e., yields a Fredholm second-kind infinite
matrix-operator equation). This is especially evident with the third
way of extracting out an invertible operator, as in this case, the
orthogonal eigenfunctions are just azimuthal exponents or spheri-
cal harmonics (products of the former with the Legendre func-
tions). Such an eigenfunction-Galerkin projection, in fact, com-
bines both semi-inversion and discretization in one single proce-
dure. This was apparently first clearly formulated in [13] for
eigenvalue problems in open domains, although the emphasis there
was on the opportunity to obtain iterative solutions. It should be
noted that, as frequently happens, in the neighboring area of elas-
ticity theory, this latter technique has been in use before it was in
electromagnetics {14]. One may easily sce that it bridges the gap
between MAR and conventional MoM solutions. Indeed, the intui-
tive idea that a judicious choice of expansion functions in MoM
can facilitate convergence obtains the form of a clear mathematical
rule: to have the convergence guaranteed, take the expansion func-

tions as orthogonal eigenfunctions of Gl . The procedure of finding
such functions is called diagonalization of a singular integrai
operator. From the viewpoint of numerical analysis, semi-inversion
plays the role of a perfect pre-conditioning of the original operator
equation, the direct discretizations of which are ill-conditioned.

4. Two examples

To make this review mote tutorial, two examples of MAR-
based numerical solutions are very briefly presented here; details
can be found in [15] and [16], respectively. Both of these are about
scatterers in layered media. In the first case, it is the free-space
canonical-shape inversion that is used; in the second case, it is the
free-space static-part inversion.

4.1 Circular dielectric cylinder in layered medium

The geometry of the problem is shown in the insert of Fig-
ure 1. The incident field is specified by the excitation. If it is a
guided surface mode of the dielectric substrate, then the problem
serves as two-dimensional model of the whispering-gallery-mode
dielectric resonator (DR), used as a band-stop filter. Considering,
for definiteness, the case of H polarization, we present the scattered
field in terms of the single-layer potentials. Transmission-type
boundary conditions at the surface of the DR lead to the following
set of integral equations:

fe(MYG(F. 7Yl = fw ()G, (7.7)dr = H'(7), (5)

Fel,

r—sa-0 E0R

. 8 o N e g O - S on
lim —i"qy(r)Gg(r,r)dl —r_liglogggw(r)Gw(r,r)dl
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Figure 1. The MAR computation error versas the number of
expansion functions (i.e., the matrix size), for the dielectric-slab
surface wave scattering from a circular dielectric cylinder [15].

Here, ¢ and w are functions to be found, L is the contour of the

DR cross-section, 7 is the outer normal unit vector, and K" is the
incident field. The kemmels in Equations (5) and (6) depend on the
uniform space Green’s functions:

Go =i 4H (" (kF =F]).

M
6, =is/4H{" (ks"*|F -7),
and the Green’s function of the layered medium:
G, =Gy +G,
Gyt 0(jl-f(kd’gwak)ei(wﬁ)mk(yw»y’)wxihk(xfx'){J‘h~ @®)

-0

The integrand function in G, is found analytically as a meromor-
phic fiunction on the two-sheet Riemann suzface of complex vari-
able &; integration is done along the real axis of the “proper” sheet,
bypassing the poles from the lower side. Now, introduce the two-
component vector functions X and I of unknown densitics and the

tight-hand parts, respectively, and a 2 x 2 “matrix” kernel G
Hi A .
n G, -G

X:{z}’ Y=t o G_[ s wJ,(9)

&G -G,
where Cﬂ;.s‘,w = .{L"'G‘E,wd‘l, > G;,wi =

.0
im —
a0 On vk
can rewrite Equations (5) and (6), in the operator notation, as one
first-kind equation of the form of Bquation (1): GX =¥ . Now,
note that the kernel function G, is a sum of the singular free-space
term (7 and the regular term G, given by the Fourier integral in
Equation (8). This leads o the following decomposition of the

whole “matrix” operator ¢ into singular and regular parts:

Gy A4l Then we
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oA G, -Gy ) (o -G
G=G1+G2= 14 - + . . (10)
G G ) o -G,

In the case where L is a circle of radius g, the orthogonal

eigenfunctions diagonalizing all four cperators GO, G'(’) . @S , and

G. are essily found as the angular cxponents )

n=0+1+2,... Indeed,

2z

| e % (Zka sin % ¢—¢' )d;ﬁ’ =" 27J, (ka) H (ka), (11)
0
% Ly 2 2
rgg}wa gem" H(g]){k\/(rcosgﬁwacoscﬁ’) +(rsing -asing’) }igﬁ’

(12)

. HD (& ki
:c'"¢275k B (Q)Jn( 0)7
o (ka) H.D (ka)

were J, and ’(11) are the first-kind Bessel and Hankel functions

of order n, respectively; the prime is for the derivative with respect
to the argument.

So, in the absence of the slab, one has an =0, and full inver-

sion of the operator G is possible, leadingno surprise—to the well-
known Mie-type series solution of the free-space circular-cylinder
scattering. However, in the presence of the slab, inversion of (A?l by
means of the diagonalization procedure yields only a partial inver-

sion of the full operator (+. Therefore such a specialized MoM-
type projection results in the infinite matrix Equation (2), instead
of the series solution [15]. It can be verified that this equation is of
the Fredholm second kind in the space of the square-sumable num-
ber sequences /,. The behavior of the computational error e(N ),

in the sense of the , -norm, is presented in Figure 1 for this equa-
tion. The error is progressively minimized all the way to the
machine precision by increasing »; the more the distance from the
DR to the slab, the fewer expansion functions one should take to
achieve the needed accuracy. Note also that the error in the energy-
conservation law (also known as the Optical Theorem), e, is

always at the machine-precision level, thus being satisfied in a
term-by-term manner.

4.2 Lossy circular disk patch on dielectric substrate

The geometry of the problem is shown in the inset of Fig-
ure 2. We suppose that a uniformly-resistive circular disk is coaxi-
ally excited by a vertical electric dipole, located at the ground
plane. This problem can serve as the simplest printed-antenna
model, although it has some real-life applications. The field in such
a geometry is ¢ -independent, and can be expressed via a single
potential function in the form of Fourier-Bessel transformation. On
using the resistive boundary conditions at the disk and the free sur-
face of the substrate, onc arrives at dual integral equations, which
collectively form a familiar operator equation of the first kind,

GX =Y.

Ix(:r)W(K,ka,h/a,é‘)J](Kp)dk‘:y(p), p=rla<l, (13
0

0 ' I r

e(N) —X%a=9, hig=0.1 i !
p - - keWZa=9, hia=1 ’
10 “keMp=|, hfa=0.1 -!
16 F £-22 3
3
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Figure 2. The same as in Figure. 2, but for the axisymmetric
dipole excitation of a circular-patch antenna [16].

[ss)

[x(e)i (sp)dc =0, p>1. (14)
0

Hete x () is an unknown function, and

Wk, ka,hla,e)=x————25 —_4iaR,  (15)
( ) s +yecoth(y, kia)

. 172 12
with y = (K'2 _kzﬂl) s Y= {K2 —kzazg) , and R is the resis-

tivity normalized by the free-space impedance.

As one can see, Equation (15) is a meromerphic function of
varigble &, with a finite number of real poles, and also with com-
plex poles responsible for the surface and ieaky waves, respec-
tively. The right-hand part y( ,o) is determined by the excitation,
i.e., by the dipole location [16]. Now, note that in the case of

hla— o and ke —0, the weight function s

W(K)%Wozic-%. Fortunately, if ¥ is replaced with «,
g

Equation (13} has a set of orthogonal eigenfunctions that
diagonalize this equation. They are:

Ja= [(4” "’5)/’(]”2 J2n+5/z(f<), r=0,1,2,.... (16)

Note also that Equation (14) is identically satisfied by the
functions of Equation (16). Hence, if we take this set of functions
as the expansion basis in the Galerkin discretization scheme, we
obtain a Fredholm second-kind infinite matrix equation,

X+AX =B, that is equivalent to Equations (13) and (14)
together, and has a solution in [, . In Figure 2, the behavior of the
computational error as a function of the number of expansion
functions is shown. One can see that machine precision is achieved
with only several expansion functions. This is not possible if one
takes the so-called “cavity modes” as the expansion basis, or
resorts to subdomain discretizations.
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Figure 3. Two-dimensional flat-strip geometries: (a) a single
strip, (b) flat, and (c) arbitrary finite arrays of strips; {d) an
infinite periodic strip grating.

5. Review of solved problems
5.1 PEC screens—static part inversion

A variety of problems, solved by MAR with a static-part
inversion, cover a wide class of two-dimensional-metal zero-thick-
ness scatterers (screens). Among these, there is first of all 2 PEC
flat strip and related geometries (Figures 3a-3d): finite collections
of strips, infinite periodic strip gratings, strip irises in parallel-plate
waveguide, and straight slots (single or multiple) in a PEC plane.
This is due to the fact that an integral equation with a Cauchy ker-
nel has a known inverse, which is used to convert an H-polariza-
tion-case electric-field integral equation into a Fredholm second-
kind equation, since the static limit of the full-wave operator is
reduced exactly to a Cauchy operator. The theory of this procedure
has been developed by Muskhelishvili [10], Gakhov [17],
Shiayerman [18], and Krein [19]; however, earlier results of
Carleman, Keldysh, and Vekua were important. Interestingly, the
same technique seems to have been developed independently by
Hayashi [20]. The E-polarization integral equation is first differen-
tiated to obtain the Cau’chy kemel as a static limit, and then the
same semi-inversion is used. Regularization can also be based on
the analytical solution to a logarithmic-kerne} integral equation
(see [18, 21]). In fact, this mathematical approach seems to have
been invented and re-invented several times within the last 50
years, in several equivalent formulations.

After analytical semi-inversion, one may apply different dis-
cretization schemes: this can be just a collocation method, but it
can also be a variant of the Galerkin projection technique. In the
former case, it is advantageous to first perform a transformation
from the space domain to the Fourier-transform domain, as then
the kernei is smoothed and, hence, the resulting equation can be
more easily solved [22]. In the latter case, two choices of the basis
functions are especially remarkable (equivalence between them
exists based on re-expansions in terms of each other).

One is the set of strip or slot-supported Chebyshev polyno-
mials of the first or the second kind, with a square-root weight or
its inverse, depending on the polarization. This choice takes into
account the electric-current edge behavior, and is convenient in. the
study of the scattering from both a single strip [23-26], finite col-
lections of strips {27, 28], and infinite periodic strip gratings [29,

30]. Moreover, this projection can be applied directly to a first-
kind equation, as these weighted polynomials form a set of
orthogonal eigenfunctions of the static kemel (see the very last
sentence of [24]); this was apparently done first in {231, In fact, the
so-called Richmond’s edge-wave approximation [31] is simply the
zeroth weighted-polynomial term of such a full projection scheme.
This can explain why a convergence improvement is observed if
one uses several edge-weighted terms in the Moment-Method
expansions [32]. However, calculating the matrix elements in the
Chebyshev discretization involves numerical integrations of the
weighted products of trigonometric functions. This can be done
more economically by adding and subtracting the asymptotic form
of the integrand, or by reducing the integration to summing up
certain series. A similar projection can be done after applying the
Fourter transformation to the first- or second-kind integral equa-
tions [33]. The Chebyshev polynomials are then transformed to the
Bessel functions, and one has to numerically integrate the oscillat-
ing products of these functions to fill the matrix.

The other choice is useful provided that the scatterer is a flat
infinite periodic strip grating (Figure 3d), or a strip iris in a
waveguide. This is to discretize the second-kind equation in terms
of the full-period exponents [34, 35]; hence, the unknowns coin-
cide conveniently with the Floquet-mode amplitudes. Such a
scheme leads to matrix elements that are reduced to finite combi-
nations of the Legendre polynomials, and thus no numerical inte-
gration is needed. Additionally, this scheme is equalty efficient for
arbitrary-strip-width-fo-period ratios of the grating, In grating
problems, such a discretization can be introduced from the begin-
ning; then, matching the fields results in the so-called dual-series
equations. That i1s why this technique is called the dual-series or
the Riemann-Hilbert Problem (RHP) method in many publications.
Indeed, the static part of an arbitrary two-dimensional H-wave
field, scattered by a two-dimensional PEC screen, is represented by
a Cauchy integral. Hence, determining it can be reduced to a RHP
about recovering an analytic function from its limiting values on a
curve given by the contour of the screen. A general solution to the
RHP was given in [13, 17]. However, equivalently, the unknown
function can be obtained directly by using the properties of inte-

a)
Y

e
N

&
A 4

Figure 4. Generalized periodic-screen types of geometries: (a)
A two-dimensional circularly carved strip, (b) a circular ring
waveguide, (¢} a circular helically-slit wavegnide, and (d) am
infinite slit cone.

X
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Figure 5. Two-dimensional modified curved-strip geometries:
(a) a finite collection and (b) an infinite grating of circularly
curved strips; (¢) an arbitrarily curved strip.

a) Z b)

c)

Y
X

Fignre 6. Axisymmetric three-dimensional screen fypes of
geometries: (a) a finite hollow circular pipe, (b} a flat circnlar
disk, and (c) a spherical-circular cap.

grals with the Cauchy or logarithmic kernels [18-20], i.e., without
resorting to dual-series equations and the RHP at all. Such a tech-
nique was first developed in [36], and was recently re-invented
again in [37]: both authors used the same book [18] as a basis.

Due to a topological analogy (periodicity along a coordinate
surface), the same choice of exponents in the discretization works
well for studying wave scattering from a PEC axially slit eircular
cylinder (i.c., a circularly curved strip in two dimensions) [38-42]
and a periodic transversely slit circular cylinder [43] (Fig-
ares 4a, 4b). Moreover, a helically slit circular cylinder (Figure
4c), with a constant-width infinite slot [44], and an infinite PEC
axially slit cone (Figure 4d), with a slot of constant angular width
[45] have also been analyzed by this method, combined with a
transformation to the helical coordinates and with the Kontorovich-
Lebedev integral transform, respectively. A cylinder with N identi-
cal periodic slots was solved in [38]. Finite collections of axially-
slit eylinders [46-48], and an infinite periodic grating of such cyl-
inders [49] (Figures 5a, 5b), have been studied by combining the
RHP technique with the addition theorems for cylindrical func-

tions. An arbitrarily curved two-dimensional strip (Figure 5c) has
been proposed to be studied by extracting out and inverting the
static part of the problem, corresponding to a flat [50] or a circu-
larly curved strip [S1]. Numerical results are available only for an
elliptically curved strip. In this case, matrix elements involve
numerical integrations for the expansion coefficients of the differ-
ence of kernels, which becomes computationally expensive if the
strip contour differs much from a straight interval or a circle,
respectively.

Turning to three-dimensional axially-symmetric scatterers,
single flat-strip MAR solutions are directly applicable to scattering
by a PEC finite circular pipe (Figure 6a). The resulting second-
kind equations have kemeis that are similar to the flat-strip case,
both in the space and Fourier-transform domains. Diagonalization
of the static-part integral operators is again done in terms of the
weighted Chebyshev polynomials and the corresponding Bessel
functions, respectively. Published results refate mainly to axisym-
metric excitations [52-55], with applications to accelerator drift
tubes and dipole antennas. Similar solutions take place for a com-
plementary geometry of a finite slot cut across an infinite circular
waveguide,

In the case of a PEC circular disk (Figure 6b), a Fredholm
second-kind integral equation was obtained in [56], in the Fourier-
Bessel {also called the Hankel} transform domain, due to a
Titchmarsh [57] inversion formula. Similarly to the above, it was
solved by collocations. An eigenfunction~-Galerkin solution, in the
transform domain, was proposed in [58] by projecting onto a set of
the Bessel functions of semi-integer index (Equation (16)). In this
case, the matrix elements involve numerical integrations of the
Bessel-function products. In the space domain, a Galerkin-type
projection onto the Jacobi polynomials works out as well, because
the latter form a set of orthogonal eigenfunctions of the static limit
of the integral-equation operator associated with a free-space disk
(the Bessel functions mentioned appear quite naturally as the trans-
forms of these polynomials).

A PEC spherical cap of arbitrary angular width (a spherical
shell with a circular aperture, Fig, 6¢) is solved in a conceptuaily
analogous way, by exploiling an exact solution of the Abel integral
equation [57]. Here, projection is naturally done on the set of the
Legendre functions of the axial-plane angular coordinate as an
entire-domain expansion basis [59-62]. Then, the matrix elements
are reduced 1o trigonometric functions, and do not involve numeri-
cal integrations. This solution has been extended to spheroidal
rotationally-symmetric caps by using expansions of angular-sphe-
roidal functions in terms of spherical functions [63]. A note should
be made that both for a finite pipe, a disk, and a spherical cap,
electromagnetic (i.e., vector) wave scattering leads to the coupled
integral equations and further matrix equations for iwo potential
fanctions, unless the excitation is azimuthally symmetric,

5.2 PEC screens—high-frequency-part inversion

As has been mentioned, in the core of this analysis there lies
an analytical solution to the Wiener-Hopf integral equation [64] for
the scattering by a PEC half-plane. This solution was used to
obtain a Fredholm second-kind integral equation, in the Fourier-
transform domain, to the problem of a wave scattering from a finite
PEC flat strip [65, 66]. The kemel of this equation decays with
increasing strip width, thus insuring that a numerical solution wilt
be progressively more efficient for larger scatterers. A technique
similar to [651 has been developed for scaftering from a periodic
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strip grating [67], a disk [68], and a finite cone [69], here in com-
bination with the Kontorovich-Lebedev integral transformation.

There is no doubt that these analyses can be potentially
extended to curved screens, as semi-infinite curved scatterers have
been solved by the Wiener-Hopf method in [70].

In fact, a MAR technique, developed in [71, 72] for the
analysis of waveguide-bend. discontinuities, is closely tied to the
approach mentioned, although it is more conveniently formulated
via a modified residue-caleulus technique.

5.3 Non-PEC screens

A class of interesting problems is associated with zero-thick-
ness screens supporting imperfect boundary conditions. There are
basically three types of such conditions [73, 74]: resistive, thin-
dielectric, and impedance-surface. The first two characterize trans-
parent, and the last one, non-transparent, imperfect screens; resis-
tive-screen scattering is a key problem. In the two-dimensional
case, a resistive boundary condition, unlike a PEC, leads directty to
a second-kind integral equation. However, the further treatment is
completely different for the two polarizations. In the E case, this
equation has a fogarithmically-singular kernel, and so it is already
a Fredholm one. Thus, non-zero resistivity plays the role of a
regularizing parameter in Tikhonov’s sense [75], and hence no
other analytical regularization is needed and any reasonable dis-
cretization scheme converges. But in the H case, the original equa-
tien kernel still has a strong singularity, and thus must be regular-
ized: the same schemes as in the PEC case work out. So far, MAR
solutions based on the static-part inversion have been reported for
the single flat resistive [76] aud impedance [77] strips; for periodic
Tesistive-strip gratings [78, 79], and in the latter paper for a dielec-
tric-strip grating as well; and for a circular resistive strip [807.
Worth noting is that not only the scattering but also the absorption
by imperfect screens was studied. High-frequency part inversion
was used in [81, 82] to derive iterative solutions of the Fredholm
second-kind integral equations for the scattering from imperfect
flat strips.

All the above-mentioned solutions can also be generalized to
variable-resistivity screens, at the expense of a certain loss in the
convergence tate {i.c., an algorithm becomes more costly for a
fixed aceuracy). In [83], this was demonstrated in the analysis of a
cylindrical-reflector antenna with a non-uniformly resistively
loaded edge.

5.4 Canonical-shape inversion

It is well known that the scattering from z PEC, as well as
from an imperfect or material circular cylinder in free space, is
¢xactly solved by the Fourier, or separation-of-variables, method.
It is reduced analytically to summing up infinite series of azi-
muthal harmonics (exponents), with ¢ylindrical functions in the
coefficients [84, 85]. Similarly, for three-dimensional free-space
scattering from a spherical object, the Mie solutions, in terms of a
series of spherical harmonics, are known [85]. This can be attrib-
uted to the fact that the corresponding integral equations have a set
of azimuthal exponents or spherical harmonics as entire-domain
orthogonal eigenfunctions of the full kernel. This can be used to
develop a MAR solution in the arbitrary smooth-surface scat-
terer analysis (Figures 7a, 7b). Extracting out a canonical-shape
part of the kernel function, and using the above functions as a

Galerkin projection basis, one comes to a Fredholm second-kind
matrix equation. MAR solutions of this sort have been obtained for
the scattering from smooth PEC and dielectric cylinders in free
space and in plate-parallel waveguides [86], and for inhomogene-
ous spherical particles [87].

A special two-dimensional shape is a PEC polygenal cylin-
der (Figure 8a). It can be viewed as a finite collection of flat strips,
and thus a single-strip MAR analysis can be used as a reference.
The fact that the strips are joined by the edges, and thus have a
moedified edge behavior of the field, is not very important, as it is
less singular than in the single-strip case. In the eigenfunction-
Galerkin scheme, this can be accounted for by choosing the
Gegenbauer or Jacobi polynomials of a needed index as expansion
functions, instead of the Chebyshev polynomials. MAR solutions
to this problem have been published based on the static-part inver-
sion [88], and on the analytical solution to a flat strip as a degener-
ate form of an elliptic cylinder [89]. A dual counterpart of this
geometry is a two-dimensional model of a waveguide mulfi-arm
junction, where the elementary scatterer is an infinitely-flanged
slot (Figure 8b). A single-flanged-slot analysis with a static-part
inversion was done in [90, 91], and step discontinuities in
waveguides {(Figure 8c) were solved in {92, 93], A junction analy-
sis, based on the elliptic-function sofution to a single slot, was con-
sidered in {94].

Worth mentioning is that the method of [88] has been
extended in [95] to treat polygonal cylinders with circularly curved
facets (Figure 8d).
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Figure 7. Arbitrary-shape smooth geometries: (a) A two-

dimensional metal or material scatterer, (b) a three-dimen-
sional inhomogeneous dielectric particle.
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Figure 8. Piecewise-smooth two-dimensional geometries: (a) a
flat-facet polygonal cylinder, (b) a waveguide joint, (¢} a
stepped waveguide circuit, and (d) a polygonal cylinder with
circularly curved facets,
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Figure 9. Two-dimensional geometries of scatterers in flat-lay-
ered media: (a) a finite strip array on a dielectric substrate, (b)
a circularly curved strip and (¢} a circular dielectric cylinder
near a dielectric slab, and (d) a smooth cylindrical inhomoge-
neity in a slab.

5.5 Scatterers in layered media

Extensions of all the above-mentioned MAR solutions to
similar scatterers embedded into a flat-layered medinm with
piecewise-constant material parameters are possible. This is due to
the fact that the corresponding Green’s function (available analyti-
cally in the transform domain} has the same type of singularity as a
free-space counterpart. Exfracting out this main part from the ker-
nel of an integral equation, and handling it in the same way as for
free-space scattering, leads to a regularized second-kind equation
with a modified smooth kemnel. The latter accounts for the conti-
nuity conditions across the layered-medium boundaries. The
matrix elements of the discretized equation obtain additional terms,
associated with the effect of the layers. MAR solutions of this type
have been reported for the flat [96-98] and circular PEC strips [99-
101}, on and near to a material interface (Figures 9a, 9b}, and in a
dielectric-slab waveguide. Besides, in two dimensions, circular
[102-104] and arhitrarily smcoth cylinders [105] in a layered
medium (Figures 9c, 9d) have been solved; applications to the
CAD of surface-wave band-stop filters were studied in [15]. In
combined geometries, the expansion of the cylindrical waves in
terms of plane waves (given by the Fourer integrals} is involved,
and hence the matrix elements contain numerical integrations. In
three-dimensions, plane-wave scattering by a PEC disk, on or near
an interface, has been analyzed in [56].

In the case of circular-cylindrical and spherical open-screen
scatterers, MAR solutions are easily modified for inhomogeneous
coaxial and concentric cylindrically and spherically-layered
media [106-111] (Figures 10a, 10b). Non-coaxial geometries, such
as a confocal resonator with an inhomogeneity [112] and a reflec-
tor in a radome [113] (Figures 10¢, 10d), have been solved as well,
although new infinite series appear, due fo using the addition theo-
rems for cylindrical functions. The MAR approach of [96] has
been extended in [114] to the case of 2 PEC strip buried in a
dielectric circular cyiinder (Figure 11a). As an example of a three-
dimensional mixed geometry, an elegant MAR-type solution has
been given m [115] for guided-mode scattering from a spherical
pasticle in a circular dielectric waveguide (Figure 11b), based on
the expansion of spherical wave functions in terms of cylindrical
vector wave functions.

A more complicated case of a mixed layered geometry is the
scattering of waves from localized scatterers in periodic media,
for example, near a periodic surface. This analysis is based on the
generalized Fourier-integral transformation, taking into account
that in the transform domain, the field is represented as a series in
the Floquet-Rayleigh space harmonics. A two-dimensional model
of an open resonator, formed by a circularly-curved PEC strip and
a periodic flat-strip grating (Figure 11¢), was studied in [99, 116]
(static-part inversion), and a circular cylinder above a sinusoidal
interface (Figure 11d) was considered in [117] (free-space cylinder
inversion).

5.6 Analytical solutions

As has been emphasized, MAR solutions, based on the
Fredholm second-kind matrix equations, have a guaranteed point-
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Figure 10. Geometries of scatterers in circnlar-cylindrical and
spherical layered media: (a) a circular slit eylinder and (b) a
spherical-circular cap with coaxial and concentric material
fillings or coatings, (¢) a two-dimensional open resonator of
two circiﬂarly curved strips with a circular dielectric rod, and

(d)} a two-dimensional circular-reflector antenna inside a cir-
cular dielectric radome.
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Figure 11. Combined geometries: (a) a flat sirip and (b) a
spherical particle inside a circular dielectric cylinder, (c) a cir-
cularly curved sirip near an infinite flat-strip grating, and (d) a
circular cylinder over a periodic interface.
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wise convergence, and thus a controlled accuracy of numerical
resulis. Depending on the nature of the inverted part, the number of
equations needed for a practical two-to-three-digit accuracy is usu-
ally slightly greater than, respectively, the electrical dimension of
the scatterer (see Figures 1 and 2), or its inverse value, or the nor-
matized deviation of the surface from the canonical shape, in terms
of both distance and curvature. In fact, the norm of the compact

operator 4| is always proportional to one of the above-men-

I
tioned values, denoted as, say, x. This enables one te exploit an
important feature of the Fredholm second-kind equations. Provided

that ”A(K)HH <1, which can always be satisfied for a small enough

i, an iterative solution to the above equations is given formally by
the Neumann-operaior series

X= i(,&)ss, 17

s=0

which converges to the exact solution, by norm in H. Hence, one
can avoid inverting Equation (2), at least in a certain domain of
parameters, For example, in [65] it was demonstrated that the low-
frequency and high-frequency MAR. integral equations in PEC flat-
strip scattering have overlapping domains of the Neumann series
convergence. This is the greatest hit of MAR, as it completely
eliminates the need of solving a mairix. Besides numerical effi-
ciency, this has another atfractive censequence. On expanding
Equation (17) in terms of the power series of &, one obtains, ana-
Iytically, rigorous asymptotic formulas for the low-frequency or
high-frequency scattering, or the scattering from a nearly-canonical
object. Such asymptotics have been published for PEC flat [63,
118-121] and circular [40, 80] strips, finite pipes [53, 122], disks
[56, 68], a spherical cap [59], and PEC and imperfect strip gratings
[67, 79]. What is worth noting is that this can be done for various
excitations specified by B: plane or cylindrical waves, 2 complex
source-point beam, a surface wave in the layered-media scattering,
etc. For dielectric, material, or chiral scatterers, another small
parameter can be used in the asymptotic solution: this is the con-
trast between a scaiterer and a host medium, in terms of material
constants. In [102] and [115], approximate solutions of this kind
were obtained for cylindrical and spherical inhomogeneities in the
slab and fiber waveguides, respectively.

5.7 Eigenvalue problems

Thege problems are closely tied to the wave-scattering prob-
lems. They can be classified as either natural-frequency or natural-
wave problems, although other eigen-parameters can be consid-
ered. The natural-wave problems appear only in the analysis of
infinite cylindrical geometrics, assuming a traveling-wave-field
solution (i.e, ~ g hetrip “).  Correspondingly, the complex
parameter, the eigenvalues of which are to be determined, is either
the normalized frequency, &, or the modal wavenumber, £ (the
propagation. constant). What is important, in either case, is ¢that a
MAR solution leads to a homogeneous equation analogous to the
scattering problem:

X+A(kp)X =0. (18)

This is a Fredholm operator equation in F, with compact operator
A normaily being a continuous function of the geometrical
parameters and a meromorphic function of the material parameters,
frequency, and modal wavenumber. Hence, due to the Steinberg
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Figure 12. Regular waveguide geometries: {(a) planar slot and
(b) microstrip lines, (c) cireular cylindrical microstrip and slot
lines, and (d) an arbitrary-cross-section dielectric waveguide.

theorems [121, it is guaranteed that the eigenvalues form a discrete
set on a complex & plane (in the three-dimensional case), or on a
logarithmic Riemann k or f surface (in the two-dimensional case
and for natural waves). There are no finite accursulation points;
eigenvalues can appear or disappear only at those values of the
other parameters where continuify or analyticity of 4 is lost.
Moreover, after discretization, the determinant of the infinite-

dimensional matrix Der (] + A) exists as a function of a parameter,

and its zeroes are the needed k or f# eigenvalues. The latter are
piece-wise continuous or piece-wise analytic functions of geomet-
rical and material parameters: these properties can be lost only at
the points where two or more eigenvalues coalesce. From a practi-
cal viewpoint, it is important that eigenvalues can be determined
numerically: the convergence of discretization schemes is guaran-
teed, the number of equations needed being dependent on the
desired accuracy and the nature of the inverted part. No spurious
eigenvalues appear, unlike many approximate numerical methods.
Note that nothing of the above can be established for an infinite-
matrix equation of the first kind, which is common in conventional
Moment-Method analyses.

Additionally, if a corresponding parameter x is small, then
the determinant is quasi-diagonal, and the eigenvalues of k or
can be obtained in the form of an asymptotic series. Such an ana-
Iytical study has been done for a PEC axially-slit cylinder [123,
107] and a spherical cap [60], assuming a narrow slot or a small
circular aperture, respectively. These asymptotics serve as a perfect
starting guess when searching for eigenvalues numerically, with a
Newton or another iterative algorithm. MAR-based numerical
analyses of natural-frequency problems have been published for a
two-dimensional mode! of an open PEC two-mirmrer resonator
[124], and for flat-strip gratings [125]. Natural-wave problems
have been studied with the MAR for the dominant modes of a pla-
nar strip and siot lines (Figures 12a, 12b} in [126-129], for princi-
pal and higher-order modes of circular-cylindrical strip and slot
lines (Figure 12¢) in [130-132], for arbitrary-cross-section dielec-
tric waveguides (Figure 12d) in [13, 133], and recently for gener-
alized slot lines [134] and Goubau-type striplines [135]. Formal
MAR solutions (homogeneous matrix equations) have also been
published for periodic waveguides: a PEC circular waveguide with
periodically-cut transverse slots [136], a helically-slit guide [137],
and a PEC plane-strip grating on a non-reciprocal substrate [£37].
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6. Conclusions

Summarizing, by using the MAR it is possible to overcome
many difficulties encountered in conventional Moment-Method
solutions. The merits of the MAR are numerous: exact solution
existence 13 gstablished, a numerical solution can be as accurate as
the machine’s precision, rigorous asymptotic formulas can be
derived. Computationally, the MAR results in a small matrix size
for a practical accuracy, and sometimes no numerical integrations
are needed for filling the matrix. Thus, the cost of MAR algorithms
is low in terms of both CPU time and memory. A common feature
is that both power conservation and reciprocity are satisfied at the
machine-precision level, independently of the number of equations,
whatever it is, The condition number is small and stable, not
growing with mesh refinement or increasing with the number of
basis functions. The latter fact means that conjugate-gradient
numerical algorithms are very promising, even in spite of a possi-
ble squaring of the condition number; this has already been empha-
sized in [139]. Using fast iterative methods, applied to the MAR
matrix equations with static semi-inversion, it is probably possible
to perform an accurate full-wave desktop analysis of the Arecibo
reflector. However, the same thing can be done more economically
by using a high-frequency semi-inversion, although this has not yet
been extended to curved screens. Worth noting is that although the
advantages of analytical regularization are obvious, 2 fully numeni-
cal eigenfunction-Galerkin scheme can work out as well. This
technique was recently developed in patch-antenna analysis [140]:
static eigenfunctions were pre-computed by a conventional roof-
top MoM scheme, and then used as a global expansion basis in a
dynamic solution. A full description of this technique is given in
[141], where favorable convergence properties and high numerical
efficiency are noted.

From a practical viewpoint, it is also important that the accu-
racy of the MAR is uniform, including resonances, both in near-
field and far-field predictions. Here, one must be reminded that
near sharp resonances, conventional Moment-Method and FDTD
golutions suffer heavy inaccuracies [8], which cannot be removed,
in principle. All this makes MAR-based algorithms perfect candi-
dates for CAD software in the numerical optimization of multi-
element two-dimensional and three-dimensional scatterers in the
so-called resonant range, where interaction between separate ele-
ments plays an important role. In fact, this is already used in
waveguide cirenit oplimization [5]; not only simple geometries,
but quite complicated two-dimensional models of refiector anten-
nas, open resonators, and open waveguides have been accurately
studied in [112, 113], showing a variety of features not predicted
by approximate techniques. The “demerits” of the MAR can be
seen in more-painful mathematical work and greater human-time
expenditures. Generally, this leads one {0 an old dilemma between
specialized and universal algorithms. However, a tradeoff between
efficiency and versatility is not enough: first of all, both algorithms
must be convergent. In the neighboring fields of engineering sci-
ence that rely on numerical simulations, today it is accuracy that
plays a decisive role, followed by the cost comparison between
equally accurate algorithms [2, 3]. In view of the increased pres-
sure of CAD and CAE demands, probably the same should be
done, sooner or later, in computational electromagnetics.
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8. Post-Conclusion: An editorial comment

Taking advantage of the Magazine article style, it seems pos-
sible to make one remark of a non-electromagnetic character. A
close view of the partial list of MAR-related publications, below,
shows that most of the authors are of Soviet (now Ukrainian and
Russian} origin. This is not by chance: this is only the visible {i.e.,
available in English) top-of-iceberg list of publications. The roots
of this phenomenon appear to be amazingly deep. In the USSR, the
number of scientists was much greater than the number of comput-
ers, which used to be second derivatives of IBM and CDC main
frames. However, antenna-design engineers and simulation scien-
tists faced the same problems as their colleagues in the USA,
Europe, and Japan. How could they cope with these problems,
without sophisticated hardware? This review gives a partial reply:
by means of a deeper, on average, usage of analytical and special-
ized-function-theoretic methods. The same is valid even more in
gas and fluid dynamics, plasma science, and nuclear fusion. So,
adding the ambitious word new to the title of a new MAR-related
paper {as in [37, 54, 110]) can be risky, without a glance to the
“Bast.” One may ask here: and why is it the USSR had failed to
develop adequate computers? To my belief, the explanation lies
not in the economy. Landslide implementation of desktop PCs and
workstations in research and developrent in the West was a logi-
cal product of progress in a relatively free society. But in the
USSR, it was something intolerable. Computers did not obey Party
discipline. Instead, they promised the terrifying prospective of
many thousands of educated dissidents able to write and print mil-
lions of critical pages. That 1s why “cybernetics,” as computer sci-
ence was called in the USSR, together with genetics, were labeled
early-on the two “call-girls in the service of capitalism,” and
severely suppressed untif the 60s. (In the USSR’s number-one uni-
versity, Moscow State University, a department of cybemetics was
opened only in 1969.) Oppositely, mathematics and physics were
considered regular and useful ladies; after successful development
of nuclear weapons and ballistic missiles, they were promoted by
all means. So, finally, there is no surprise that penetic alporithms
come to electromagnetics from the *West.” But equally, thers is no
surprise that MAR comes from the “East.” Both, apparently, have
come to stay.
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Report on the ANTEM ‘98
Symposium

The ANTEM ({Antenna Technology and Applied
Electromagnetics) Symposium has been held biannually since
1986. On August 10-12, 1998, the seventh ANTEM Symposium
was held af the Chateau Laurier Hotel in Ottawa, Ontario, Canada.
This was the second time the Symposium has been held in Ottawa,
following a very successful year in 1994, The symposium had 156
scheduled papers, with one-third of them from outside Canada. The
conference was quite successful, with over 175 participants from
15 countries besides Canada attending and enjoying the beautiful
city of Ottawa. The conference continued to be one of the most
economical, due to sponsorship from 10 Canadian companies.

Symposium participants presented their work on the latest
developments in antenna technology and applied electromagnetics,
in areas including personal communications, satellite antennas, and
microwave electronics. This year, the customary sessions by inter-
national researchers in the antenna and electromagnetic fields and
the special session profiling Canadian industry, held for the second
time this year, were complemented by three keynote addresses and
one special plenary session.

Emerging areas of research

Emerging areas of research were highlighted with presenta-
tions by three international leaders in their fields:

“Micromachining for Microwave and Millimeter-Wave Systems,”
Prof. Gabriel M. Rebeiz, Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, MI, USA

“Recent Progress in Reflector Antenna Analysis and Design,” Dx.
Trevor S. Bird, CSIRO Telecommunications and Industrial Phys-
ics, Epping, Australia

“Emerging Array Antenna Technologies at JPL,” Dr. John Huang,
Jet Propulsion Laboratory, California Institute of Technelogy,
Pasadena, CA, USA

Emerging wideband wireless delivery systems

“Emerging Wideband Wireless Delivery Systems” was the
title and theme of a special plenary session, with representatives
from major industry leaders in satellite and terrestrial wideband
delivery systems. The session focused particularly on requirements

placed on the RF technology for the terminals for emerging
broadband wireless systems.

Satellite Wideband Service Delivery Systems

e Teledesic: Hugh Malone, “A Motorola Ka-Band Wideband
Low Earth Orbit System”

e Agtrolink: Kungta K. Chow, “A Lockheed-Martin Ka-Band
Wideband GEO Systemn”

o Skybridge: Pierre Fraise, “An Alcatel-Space Ku-Band Wide-
band Low Earth Orbit System”

Terrestrial Point-to-Multipoint Wideband Wireless Delivery Sys-
tems

¢ Lucent Broadband Networks Division (ex HP): Gary Labelle,
“A Local Multipoint Distribution System™

e Nortel Broadband Wireless Access Division: Paul Astell, Steve
Rayment, Michael Van Der Tol, “Wideband Ka-Band Delivery
Systems”

Proceedings and future plans

The proceedings of the symposium are available from the
Department of Electrical and Computer Engineering, University of
Manitoba, Winnipeg, Manitoba, Canada, R3T 5V6. ANTEM 2000
is planned for August 2000, in its birthplace of Winnipeg, Mani-
toba, Canada. The organizing committes promises to ensure that
ANTEM 2000 will be a major event, werthy of international par-
ticipation.

Rene Douville
Communications Research Centre
Ottawa, Canada

Dr. Chandra Kudsia
ComDev Limited
Cambridge, Canada
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