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1. Ahstract 

On the rugged terrain of today’s computational electromag- 
uetics, the universal rope-way of MOM and industrial rock-climb- 
ing with FDTD electric hammers are necessav technologies. 
However, a free-style solo climb at the Everest of analytical regu- 
larization is still a fascinating achievement. Here, we discuss the 
foundations and state-of-the-art of the Metliod of Analytical 
Regularization (also called the semi-inversion method). This is a 
collective name for a family of methods based on conversion of a 
first-kind or strongly-singular second-kind integral equation to a 
second-kind integral equation with a smoother kernel, to ensure 
point-wise convergence of the usual discretization schemes. This is 
done using analytical inversion of a singular part of the original 
equation; discretization and semi-inversion can be combined in one 
operation. Numerous problems being solved today with this 
approach are reviewed, although in some of them, MAR comes in 
disguise. 

2. Introduction 

bee  different IEEE periodicals, dealing with closely related T problems, have come out of the printers almost simultane- 
ously: IEEE Transactions on Antennas and Propagation, 45, 3, 
1997 (‘‘Special Issue on Advanced Numerical Techniques in Elec- 
tromagnetics”); Computational Science and Engineering, 4, I ,  
1997; and IEEE Antennas and Propagation Magazine, 39, 1, 1997. 
This made possible a comparison of thc trends and efficiency crite- 
ria of numerical methods in computational electromagnetics 
(CEM), on the one side, and micro-electro-mechanical systems 
(MEMS) and fluid dynamics, on the other side. Although the 
opening paper in the Transactions [ I ]  is an entirely mathematical 
essay on integral equations in Sobolev spaces, in my opinion, this 
special issue leaves no doubt that in CEM, finite-difference and 
finite-element methods, combined with genetic algorithms when it 
comes to optimization, are rapidly taking over integral-equation 
analysis. Meanwhile, a systematic study of accuracy, not to talk 
ahout the comparative costs of different convergent schemes, is 
still not a primary concern, in visible contrast with fluid dynamics 
[2] and MEMS [3]. Even such a trivial remark as that of [2]-that 
when talking about numerical accuracy, it is necessary to use a 

relative norm of error as a function of, say, the number of mesh 
points, and to display it on a logarithmic scale to show clearly the 
range and the rate of convergence-seems to still not be a common 
practice of CEM publications. On the other hand, in MEMS, 
intrinsic limitations of finite methods are so clearly understood [3] 
that serious academic and commercial efforts are made to use 
improved boundary-integral-equation formulations wherever pos- 
sible. In view of this, it seems ihat the following review of an 
alternative CEM experience may he useful. 

Together with fluid dynamics, MEMS, and some other 
neighboring fields of engineering science, applied electromagnetics 
today is closely tied to progress in computer-aided modeling. 
Technologies for fabricating antennas, microwave circuits, and 
sources have developed rapidly, but this is not so with compnta- 
tional tools enabling quick desktop design and optimization. 
Inadequate simulation tools still force engineers to resort to costly 
physical prototyping, which may take weeks, or to rely on intui- 
tion. Meanwhile, an aggressive design strategy towards devising 
really “smart” antennas and circuits-multi-element, high-perform- 
ance, and low-cost-calls for both faster and more-accurate algo- 
rithms. In the CEM community, this double challenge seems still 
not to be recognized, and what is paid attention to are usually only 
the tradeoffs between the efficiency (i.e., the computation time and 
memory) and versatility of a solver. The only, but remarkable, 
exception seems to he the design of complicated waveguide cir- 
cuits (filters, diplexers, multiplexcrs, transitions, etc.), where the 
accuracy of the numerical modeling of each elementary resonant 
discontinuity is crucial for the design ofthe whole circuit [4-61. 

The performance of antennas and many other microwave 
devices has to be analyzed in large or infinite domains. This leads 
to finding solutions to exterior problems for the electromagnetic 
fields and waves; additionally, in many applications, simulating the 
time-harmonic-field performance is crucial. Thus, one comes to 
wave scattering and radiation analysis based on the time-independ- 
ent Maxwell and Helmholtz equations, in open domains. Although 
it is possible to solve them by using finite-difference discretira- 
tions of the partial differential equations, associated problems of 
domain truncation, “good” exterior meshing, and solving enormous 
matrices are hardly compatible with high accuracy. To avoid these, 
boundary-element and Green’s function methods can be used, 
applied to integral-equation formulations. Of the advantages, two 
main points are to be emphasized: the radiation condition is auto- 
matically taken into account, and only the boundaries need to be 
discretized. However, this frequently generates ill-conditioned 
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dense matrices, and so something should be done to adapt these 
formulations to meeting the combined challenge of the speed and 
accuracy of computations. Many textbooks and journal papers on 
computational electromagnetics deal with first-kind integral equa- 
tions for determining the surface or polarization currents of two- 
dimensional and three-dimensional metallic or dielcctric scatterers, 
respectively, given the incident field. Such equations are obtained 
from the boundary conditions, and normally have logarithmic or 
higher-order singular kernels. They are further discrctized for a 
numerical solution by using subdomain (collocations) or entire- 
domain basis functions. Although this commonly brings meaning- 
ful and useful results, unfortunately, there are not any general theo- 
rems proving convergence, or even the existence of an exact solu- 
tion, for such equations [7]. A rule-of-thumb of taking at least 10 
mesh points per wavelength is only a rule-of-thumb, and by no 
means does it guarantee any number of correct digits. 

A good demonstration o l  what may sometimes happen to 
such algorithms is given in [SI. By the simple example of two- 
dimensional plane-wave scattering from a tubular circular cylinder, 
it is shown that the Moment-Method and FDTD solutions can be 
1000% or more in error in a typical resonant situation. The "pain 
points" of the conventional Moment-Method approach have been 
excellently reviewed in [7]; since then, essentially nothing has 
changed. The final statement of [7] is worth reciting: "It is mis- 
leading to refer to the result as solution when in fact it is numeri- 
cal approximation with no firm mathematical estimate of nearness 
to solution." Mathematically, if the corresponding integral operator 
is viewed as a mapping between certain Sobolev spaces, the exis- 
tence of a solution and the convergence of standard discretiration 
schemes for some of the first-kind equations can he shown. (A 
Sobolev space has a scalar product and n o m  defined through both 
the function and its gradient; in electromagnetics, such a norm is 
easily identified with power.) Uniqueness is normally guaranteed 
by a sufficient set of boundary, edge, and radiation conditions. A 
simple example of this sort is the logarithmic-singular integral 
equation in the two-dimensional E-wave scattering from a PEC 
(perfectly electrically conducting) flat strip. However, in a practical 
sense this is not a great deal, as the condition number grows with 
the number of equations [9], thus making the matrix impossible to 
solve for an accuracy better than several digits and a scatterer 
greater than 10.20 wavelengths. Nearly the same can be said of the 
discretization of second-kind equations having strongly singular 
kernels. Although it is possible to eliminate ill-conditioning by 
using specialized discretization schemes, based on Sobolev-space 
inner products [I], this appears to have a limited range of applica- 
tion. 

Meanwhile, there exists a general approach to obtaining sec- 
ond-kind intcgrai equations of the Fredholm type, with a smoother 
kemel, from first-kind equations. Discretization of these new 
equations, either by collocation or by a Galerkin-type projection on 
a set of basis functions, generates mairix equations the condition 
number of which remains smdll when the number of mesh paints 
or "impcdance-matrix" size is taken to be progressively greater. 
The approach mentioned is collectively called the Method of Ana- 
lytical Regularization (MAR). The term has apparently been intro- 
duced by Muskhelishvili [IO]; sometimes semi-inversion is used as 
a synonym It is based on the extraction and analytical inversion of 
a singular part of the original full-wave operator; however, in prin- 
ciple, it is possible to make a partial inversion numerically. It must 
he admitted that the whole idea of MAR can be traced back to the 
pioneering work of the founders of singular-integral-equation the- 
ory, Hilbert, Poincare and Noether, well before the first appearance 
of a computer. 

3. Foundations of MAR 

The formal scheme of MAR is deceptively simple, and works 
as follows. Assume that the boundary conditions generate a first- 
kind integral equation. In operator notation, this can he written as 

G X = Y ,  (1) 

where X and Y stand for the unknown and given function, respec- 
tively. In wave-scattering problems, a direct analytical inversion of 
e is normally not possible, while a numerical inversion, as has 
been mentioned, has no guaranteed convergence. Split operator C? 

into two parts: 6 = el +e2 . Assume now that the first of these has 

a known inverse, 6;'. Then, by acting with this operator on the 
original equation, one obtains a second-kind equation: 

X + h = B ,  (2) 

" " I "  where A=G; G, and B=G; 'Y .  However, this scheme is 
mathematically justified only if the resulting operator equation is 

of the Fredholm type. This means that the operator 2 must be 
compact on a certain Hilbert space H (i.e., must have a hounded 
norm IIAI/,, < m), and the right-hand side vector B must belong to 
the same space H. This inherently implies that the inverted opera- 
tor el is singular, while is regular. Then, all the power of the 
Fredholm theorems generalized for operators [IO-121 can he 
exploited, proving both the existence of an exact solution, 

X = ( I  + A)-' B (I  is the identity operator), and the point-wise 
convergence of discretization schemes in H, without resorting to 
residual-error estimations like for first-kind equations [l, 71. 
Indeed, suppose that we have discretized the second-kind equation. 
Consider its "truncated" counterpart, 

XN + A N X N  = B ,  ( 3 )  

the matrix AN for which is filled with zero elements off the 
N x N square. It is easy to show that the relative error, by the 
norm in FI, 

is destined to go to zero with N + m , as the first factor in the 
right-hand part above is a bounded constant, while the second is 
decreasing. Of course, in finite-digit arithmetic, this decrement is 
limited by the machine precision. The rate of decay of the function 
e ( N )  determines the cost of the algorithm, and this can he differ- 

ent for different ways of selecting the invertible singular part, 6; 

Here comes a key question: how to select the operator e, ? It 
is apparently possible to point out at least three basic principles for 
extracting an invertible singular part of the original operator. These 
are extracting the static part (Laplace equation theory is simpler 
than the Helmholtz theory, and sometimes associated boundary 
problems can be salved analytically); extracting the high-frequency 
part (in fact, this is about half-plane scattering, which can be 
solved by the Wiener-Hopf method); and extracting the frequency- 
dependent part corresponding to a canonical shape (which is either 
a circle, in two dimensions, or a sphere, in three dimensions, solv- 
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able by separation of variables). A note can be made that a half 
plane is also a sort of canonical-shape scatterer, but it has an infi- 
nite surface in terms of any length parameter, including the wave- 
length. 

Although inversion of the static or high-frequency part seems 
to be based on quite specialized functional techniques, it is useful 
to point out one general feature in all the above cases. If it is possi- 
ble to find a set oforthogonal eigenfunctions of the separated sin- 
gular operator e,, then the Galerkin-projection technique, with 
these functions as a basis, immediately results in a regularized dis- 
cretization scheme (i,e., yields a Fredholm second-kind infinite 
matrix-operator equation). This is especially evident with the third 
way of extracting out an invertible operator, as in this case, the 
orthogonal eigenfunctions are just azimuthal exponents or sphen- 
cal harmonics (products of the former with the Legendre func- 
tions). Such an eigenfunction-Galerkin projection, in fact, com- 
bines both semi-inversion and discretization in one single proce- 
dure. This was apparently first clearly formulated in [I31 for 
eigenvalue problems in open domains, although the emphasis there 
was on the opportunity to obtain iterative solutions. It should be 
noted that, as frequently happens, in the neighboring area of elas- 
ticity theory, this latter technique has been in use before it was in 
electrornagnetics [14]. One may easily see that it bridges the gap 
between MAR and conventional MOM solutions. Indeed, the intui- 
tive idea that a judicious choiw of expansion functions in MOM 
can facilitate convergence obtains the form of a clear mathematical 
mle: to have the convergence guaranteed, take the expansion func- 
tions as orthogonal eigenfunctions of 6,. The procedure of finding 
such functions is called diagonaiization of a singular integral 
operator. From the viewpoint of  numerical analysis, semi-inversion 
plays the role of a perfect pre-conditioning of the original operator 
equation, the direct discretizations of which are ill-conditioned. 

4. Two examples 

To make this review more tutorial, two examples of MAR- 
based numerical solutions are very briefly presented here; details 
can he found in [I51 and [16], respectively. Both ofthese are about 
scatterers in layered media. In the first case, it is the free-space 
canonical-shape inversion that is used; in the second case, it is the 
free-space static-part inversion. 

4.1 Circular dielectric cylinder in layered medium 

The geometry of the problem is shown in the insert of Fig- 
ure 1. The incident field is specified by the excitation. If it is a 
guided surface mode of the dielectric substrate, then the problem 
serves as two-dimensional model of the whispering-gallery-mode 
dielectric resonator (DR), used as a band-stop filter. Considering, 
for definitenoss, the case of H poldlization, we prcsent the scattered 
field in terms of the single-layer potentials. Transmission-type 
boundary conditions at the surface of the DR lead to the following 
set of integral equations: 

lp(F’)Ge(7,?‘)dr - jw(?)G,(?,?’)dl‘ = f € F  ( F ) ,  (5)  
L L 

? E L ,  

lim - a fp(J)G, (?,?‘)dr- lirn - a fy(7‘)Gw(F,F‘)dT 

L 
r+o+~ an L r-to-~ &an 
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Figure 1. The MAR computation error versus the number of 
expansion functions (i.e., the matrix size), for the dielectric-slab 
surface wave scattering from a circular dielectric cylinder [15]. 

Here, y7 and y are functions to be found, L is the contour of the 

DR cross-section, n‘ is the outer normal unit vector, and H r  is the 
incident field. The kernels in Equations ( 5 )  and (6) depend on the 
uniform space Green’s functions: 

Go =i/4Hh1)(k/7-71); 

G, = ;&,/4H$’) ( kc”’ I H ) ,  -’ 

and the Green’s function of the layered medium: 

G, =Go +G, 

(7) 

The integrand function in G, is found analytically as a meromor- 
phic function on the two-sheet Riemann surface of complex vari- 
able h; integration is done along the real axis ofthe “proper” sheet, 
bypassing the poles from the lower side. Now, introduce the two- 
component vector functions Xand Y of unknown densities and the 
right-hand parts, respectively, and a 2 x 2 “matrix” kernel G : 

a where = L...Ga,wdZ‘, e;,,* = lim - ...Gs,wdT. Then we 

can rewrite Equations (5 )  and (6), in the operator notation, as one 
first-kind equation of the form of Equation (1): e X =  Y .  Now, 
note that the kernel function G, is a sum of the singular free-space 
term Go and the regular term G, , given by the Fourier integral in 
Equation (8). This leads to the following decomposition of the 
whole “matrix” operator 6 into singular and regular parts: 

y.i.+~an L 
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In the case where L is a circle of radius a, the orthogonal 
eigenfunctions diagonalizing all four operators eo, e;+, 4, and 

GL are easily found as the angular exponents e'"(, 

n = 0,+1,+2 ,... . Indeed, 

a 2n lim - j ein4'H!) [id( icos ( - a  cos(')' + ( r  sin( - a  sin(') 
U 

,+ala an 

were J ,  and H;) are the first-kind Bessel and Hankel functions 
of order n, respectively; the prime is for the derivative with respect 
to the argument. 

So, in the absence ofthe slab, one has 8, = 0,  and full inver- 

sion of the operator 8 is possible, leading-no surprise-to the well- 
known Mie-type series solution of the free-space circular-cylinder 
scattering. However, in thc presence ofthe slab, inversion of 8, by 
means of the diagonalization procedure yields only a partial inver- 
sion of the full operator G. Therefore such a specialized MoM- 
type projection results in the infinite matrix Equation (2), instead 
of the series solution 1151. It can be verified that this equation is of 
the Fredholm second kind in the space ofthe square-sumahle num- 
ber sequences 1,. The behavior of the computational error e ( N ) ,  

in the sense of the 1' -norm, is presented in Figure 1 for this equa- 
tion. The error is progressively minimized all the way to the 
machine precision by increasing N, the more the distance from the 
DR to the slab, the fewer expansion functions one should take to 
achieve the needed accuracy. Note also that the error in the energy- 
conservation law (also known as the Optical Theorem), e,,, is 
always at the machine-precision level, thus being satisfied in a 
term-by-term manner. 

4.2 Lossy circular disk patch on dielectric substrate 

The geometry of the problem is shown in the inset of Fig- 
ure 2. We suppose that a uniformly-resistive circular disk is coaxi- 
ally excited by a vertical electric dipole, located at the ground 
plane. This problem can sene  as the simplest printed-antenna 
model, although it has some real-life applications. The field in such 
a geometry is @-independent, and can he expressed via a single 
potential function in the form of Fourier-Bessel transformation. On 
using the resistive boundary conditions at the disk and the free sur- 
face of the substrate, one arrives at dual integral equations, which 
collectively form a familiar operator equation of the first kind, 
6 X = Y :  

m 
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Figure 2. The same as in Figure. 2, but for the axisymmetric 
dipole excitation of a circular-patch antenna [16]. 

m 

j X ( K ) J l  ( K p ) d K  = 0 ,  p > 1. 
0 

Here X(K) is an unknown function, and 

W(K,ka,h/a ,&) = K -~ W E  +ikaR, (15) 
Y. +Y&coth(Y,hla) 

with y = ( K' -k2a2)"', yG = (K 

tivity normalized by the free-space impedance. 

As one can see, Equation (15) is a meromorphic function of 
variable K ,  with a finite number of real poles, and also with com- 
plex poles responsible for the surface and leaky waves, respec- 
tively. The right-hand part y ( p )  is determined by the excitation, 
i.e., by the dipole location [16]. Now, note that in the case of 

hJa+m and ka+O, the weight function is 

W ( K )  + WO = KE. Fortunately, if W is replaced with K ,  

Equation(l3) has a set of orthogonal eigenfunctions that 
diagonalize this equation. They are: 

& + I  

Note also that Equation (14) is identically satisfied by the 
functions of Equation (16). Hence, if we take this set of functions 
as the expansion basis in the Galerkin discretization scheme, we 
obtain a Fredholm second-kind infinite matrix equation, 
X + k = B ,  that is equivalent to Equations (13) and (14) 
together, and has a solution in 1 2 .  In Figure 2, the behavior of the 
computational error as a function of the number of expansion 
functions is shown. One can sec that machine precisian is achieved 
with only several expansion functions. This is not possible if one 
takes the so-called "cavity modes" as the expansion basis, or 
resorts to subdomain discretizations. 



T” 

Figure 3. Two-dimensional flat-strip geometries: (a) a single 
strip, (b) flat, and (c) arbitrary finite arrays of strips; (d) an 
infinite periodic strip grating. 

5. Review of solved problems 

5.1 PEC screens-static part  inversion 

A variety of problems, solved by MAR with a static-part 
inversion, cover a wide class of two-dimensional-metal zero-thick- 
ness scatterers (screens). Among these, there is first of all a PEC 
flat strip and related geometries (Figures 3a-3d): finite collections 
of strips, infinite periodic strip gratings, strip irises in parallel-piate 
waveguide, and straight slots (single or multiple) in a PEC plane. 
This is due to the fact that an integral equation with a Cauchy ker- 
nel has a known inverse, which is used to convert an H-polariza- 
tion-case electric-field integral equation into a Fredholm second- 
kind equation, since the static limit of the full-wave operator is 
reduced exactly to a Cauchy operator. The theory of this procedure 
has been developed by Muskhelishvili [IO], Gakhov [17], 
Shtayerman [18], and Krein [19]; however, earlier results of 
Carleman, Keldysh, and Vekua were important. Interestingly, the 
same technique seems to have been developed independently by 
Hayashi [20]. The E-polarization integral equation is first differen- 
tiated to obtain the Cauihy kernel as a static limit, and then the 
same semi-inversion is used. Regularization can also he based on 
the analytical solution to a logarithmic-kernel integral equation 
(see [la, 211). In fact, this mathematical approach seems to have 
been invented and re-invented several times within the last 50 
years, in several equivalent formulations. 

301. Moreover, this projection can be applied directly to a first- 
kind equation, as these weighted polynomials form a set of 
orthogonal eigenfunctions of the static kernel (see the vny  last 
sentence of 1241); this was apparently done first in [23]. In fact, the 
so-called Richmond’s edge-wave approximation [31] is simply the 
zeroth weighted-polynomial term of such a full projection scheme. 
This can explain why a convergence improvement is observed if 
one uses several edge-weighted terms in the Moment-Method 
expansions [32]. However, calculating the matrix elements in the 
Chehyshev discretization involves numerical integrations of the 
weighted products of trigonometric functions. This can he done 
more economically by adding and subtracting the asymptotic form 
of the integrand, or by reducing the integration to summing up 
certain series. A similar projection can be done after applying the 
Fourier transformation to the first- or second-kind integral equa- 
tions 1331. The Chehyshev polynomials are then transformed to the 
Bessel functions, and one has to numerically integrate the oscillat- 
ing products of these functions to fill the matrix. 

The other choice is useful provided that the scatterer is a flat 
infinite periodic strip grating (Figure 3d), or a strip iris in a 
waveguide. This is to discretize the second-kind equation in terms 
of the full-period exponents [34, 351; hence, the unknowns coin- 
cide conveniently with the Floquet-mode amplitudes. Such a 
scheme leads to matrix elements that are reduced to finite combi- 
nations of the Legendre polynomials, and thus no numerical inte- 
gration is needed. Additionally, this scheme is equally efficient for 
arbitrary-strip-width-to-period ratios of the grating. In grating 
problems, such a discretization can he introduced from the hegin- 
ning; then, matching the fields results in the so-called dual-series 
equations. That is why this technique is called the dual-series or 
the Riemann-Hilbert Problem (RHP) method in many publications. 
Indeed, the static part of an arbitrary two-dimensional H-wave 
field, scattered by a two-dimensional PEC screen, is represented by 
a Cauchy integral. Hence, determining it can be reduced to a RHP 
about recovering an analytic function from its limiting values on a 
cuwe given by the contour of the screen. A general solution to the 
RHF was given in [lo, 171. However, equivalently, the unknown 
function can be obtained directly by using the properties of inte- 

x : I  AAer analytical semi-inversion, one may apply different dis- 
cretization schemes: this can he just a collocation method, hut it 
can also be a variant of the Galerkin projection technique. In the 
former case, it is advantageous to first perform a transformation 
from the space domain to the Fourier-transform domain, as then 
the kernel is smoothed and, hence, the resulting equation can he 
more easily solved [22]. In the latter case, two choices of the basis 
functions are especially remarkable (equivalence between them 
exists based on re-expansions in terms of each other). y> C) 

One is the set of strip or slot-supported Chebyshev polyno- X 
mials of the first or the second kind, with a square-root weight or 
its inverse, depending on the polarization. This choice takes into 
account the electric-current edge behavior, and is convenient in the 
study of the scattering from both a single strip [23-261, finite col- 
lections of strips 127, 281, and infinite periodic ship gratings [29, 

38 

Figure 4. Generalized periodic-screen types of geometries: (a) 
A two-dimensional circularly curved strip, (b) a circular ring 
waveguide, (c) a circular helically-slit waveguide, and (d) an 
infinite slit cone. 
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Figure 5. Two-dimensional modified curved-strip geometries: 
(a) a finite collection and (h) an  infinite grating of circularly 
curved strips; (c) an arbitrarily curved strip. 

if x 

Figure 6. Axisymmetric three-dimensional screen types of 
geometries: (a) a finite hollow circular pipe, (b) a flat circular 
disk, and (c) a spherical-circular cap. 

grals with the Cauchy or logarithmic kernels [18-20], i.e., without 
resorting to dual-series equations and thc RHP at all. Such a tech- 
nique was first developed in [36], and was recently re-invented 
again in [37]: both authors used the same hook [I81 as a basis. 

Due to a topological analogy (periodicity along a coordinate 
surface), the same choice of exponents in the discretization works 
well for studying wave scattering from a PEC axially slit circular 
cylinder (i.e., a circularly curved strip in two dimensions) [38-421 
and a periodic transversely slit circular cylinder [43] (Fig- 
ures 4a, 4b). Moreover, a helically slit circular cylinder (Figure 
4c), with a constant-width infinite slot [44], and an infinite PEC 
axially slit cone (Figure 4d), with a slot of constant angular width 
1451 have also becn analyzed by this method, combined with a 
transformation to the helical coordinatcs and with the Kantorovich- 
Lebedev integral transform, respectively. A cylinder with N identi- 
cal periodic slots was solved in [38]. Finite collections of axially- 
slit cylinders [46-481, and an infinite periodic grating of such cyl- 
inders [49] (Figures 5a, 5b), have been studied by combining the 
RHP technique with the addition theorems for cylindncal func- 
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lions. An arbitrarily curved two-dimensional strip (Figure 5c)  has 
been proposed to be studied by extracting out and inverting the 
static part of the problem, corresponding to a flat [50] or a circu- 
larly curved strip [SI]. Numerical rcsults are available only for an 
elliptically curved strip. In this case, matrix elements involve 
numerical integrations for the expansion coefficients of the differ- 
ence of kernels, which becomes computationally expensive if the 
strip contour diflers much from a straight interval or a circle, 
respectively. 

Turning to three-dimensional axially-symmetric scatterers, 
single flat-strip MAR solutions are directly applicable to scattering 
by a PEC finite circular pipe (Figure 6a). The resulting second- 
kind equations have kernels that are similar to the flat-strip case, 
both i n  the space and Fourier-transform domains. Diagonalization 
of the static-part integral operators is again done in terms of the 
weighted Chebyshev polynomials and the corresponding Bessel 
functions, respectively. Published results relate mainly to axisym- 
metric excitations [52-55], with applications to accelerator drift 
tubes and dipole antennas. Similar solutions take place for a com- 
plementaty geometty of a finite slot cut across an infinite circular 
waveguide. 

In the case of a PEC circular disk (Figure 6b), a Fredholm 
second-kind integral equation was obtained in [56], in the Fourier- 
Bessel (also called the Hankcl) transform domain, due to a 
Titchmarsh [57] inversion formula. Similarly to the above, it was 
solved by collocations. An eigenfnnction-Galerkin solution, in the 
transform domain, was proposed in [58] by projecting onto a set of 
the Bessel functions of senii-integer index (Equation (16)). In this 
case, the matrix elements involve numerical integrations of the 
Bessel-function products. In the space domain, a Galerkin-type 
projection onto the Jacobi polynomials works out as well, because 
the latter form a set of orthogonal eigenfunctions of the static limit 
of the integral-equation operator associated with a free-space disk 
(the Bessel functions mentioned appear quite naturally as the trans- 
forms of thcse polynomials). 

A PEC spherical cap of arbitrary angular width (a spherical 
shell with a circular aperturc, Fig. 6c) is solved in a conceptually 
analogous way, by exploiting an exact solution of the Ahel integral 
equation [57]. Here, projection is naturally done on the set of the 
Legendre functions of the axial-plane angular coordinate as an 
entire-domain cxpansian basis 159-621. Then, the matrix elements 
are reduced lo trigonometric funclions, and do not involve numeri- 
cal integrations. This solution has been extended to spheroidal 
rotationally-symmetric caps by using expansions of angular-sphe- 
roidal functions in  tcrms of spherical functions [63]. A note should 
be made that both for a finite pipe, a disk, and a spherical cap, 
electromagnetic (i.e., vector) wave scattering leads to the coupled 
integral equations and further matrix equations for iwo potential 
functions, unless the excitation is azimuthally symmetric. 

5.2 PEC screens-high-frequency-part inversion 

As has been mentioned, in the core of this analysis there lies 
an analytical solution to the Wiener-Hapf integral equation [64] for 
the scattering by a PEC half-plane. This solution was used to 
obtain a Fredholm sccond-kind integral cqnation, in the Fourier- 
transform domain, to the problem of a wave scattering from a finite 
PEC flat strip [G5,  661. The kernel of this equation decays with 
increasing strip width, thus insuring that a numerical solution will 
be progressively more efficient. for larger scatterers. A technique 
similar to [65] has heen developed for scattering from a periodic 
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strip grating [67], a disk [68], and a finite cone [69], here in com- 
bination with the Kontorovich-Lehedev integral transformation. 

There is no doubt that these analyses can he potentially 
extended to curved screens, as semi-infinite curved scatterers have 
been solved by the Wiener-Hopf method in [70]. 

In fact, a MAR technique, developed in [71, 721 for the 
analysis of waveguide-bend discontinuities, is closely tied to the 
approach mentioned, although it is more conveniently formulated 
via a modified residue-calculus technique. 

5.3 Non-PEC screens 

A class of interesting problems is associated with zcro-thick- 
ness screens supporting imperfect boundary conditions. There are 
basically three types of such conditions [73, 741: resistive, thin- 
dielectric, and impedance-surface. The first two characterize trans- 
parent, and the last one, non-transparent, imperfect screens; resis- 
tive-screen scattering is a key problem. In the two-dimensional 
case, a resistive boundary condition, unlike a PEC, leads directly to 
a second-kind integral equation. However, the further treatment is 
completely different for the two polarizations. In the E case, this 
equation has a logarithmically-singular kernel, and so it is already 
a Fredholm one. Thus, non-zero resistivity plays the role of a 
regularizing parameter in Tikhonov’s sense [75], and hence no 
other analytical regularization is needed and any reasonable dis- 
cretization scheme converges. But in the H case, the original equa- 
tion kemel still has a strong singularity, and thus must he regular- 
izeu: ;!le same schemes as in the PEC case work out. So far, MAR 
solutions based on the static-part inversion have been reported for 
the single flat resistive 1761 and impedance [77] strips; for periodic 
resistive-strip gratings [78, 791, and in the latter paper for a dielec- 
tric-strip grating as well; and for a circular resistive strip [SO]. 
Worth noting is that not only the scattering but also the absorption 
by imperfect screens was studied. High-frequency part inversion 
was used in [81, 821 to derive iterative solutions of the Fredholm 
second-kind integral equations for the scattering from imperfect 
flat ships. 

All the above-mentioned solutions can also he generalized to 
variable-resistivity screens, at the expense of a certain loss in the 
convergence rate (i.e., an algorithm becomes more costly for a 
fixed accuracy). In [83], this was demonstrated in the analysis of a 
cylindrical-reflector antenna with a non-uniformly resistively 
loaded edge. 

5.4 Canonical-shape inversion 

It is well known that the scattering from a PEC, as well as 
from an imperfect or material circular cylinder in free space, is 
exactly solved by the Fourier, or separation-of-variables, method. 
It is reduced analytically to summing np infinite series of a% 
muthal harmonics (exponents), with cylindrical functions in the 
coefficients [84, 851. Similarly, for three-dimensional free-space 
scattering from a spherical object, the Mie solutions, in terms of a 
series of spherical harmonics, are known [SS]. This can be attrib- 
uted to the fact that the corresponding integral equations have a set 
of azimuthal exponents or spherical harmonics as entire-domain 
orthogonal eigenfunctions of the full kernel. This can he used to 
develop a MAR solution in the arbitrary smooth-surface scat- 
terer analysis (Figures 7a, 7b). Extracting out a canonical-shape 
part of the kernel function, and using the above functions as a 
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Galerkin projection basis, one comes to a Fredholm second-kind 
matrix equation. MAR solutions of this sort have been obtained for 
the scattering from smooth PEC and dielectric cylinders in free 
space and in plate-parallel waveguidcs [86], and Cor inhomogene- 
ous spherical particles [87]. 

A special two-dimensional shape is a PEC polygonal cylin- 
der (Figure Sa). It can he viewed as a finite collection of flat strips, 
and thus a single-strip MAR analysis can he used as a reference. 
The fact that the strips are joined by the edges, and thus have a 
modified edge behavior of the field, is not vely important, as it is 
less singular than in the single-strip case. In the eigenfunction- 
Galerkin scheme, this can be accounted for by choosing the 
Gegenbauer or Jacobi polynomials of a needed index as expansion 
functions, instead of the Chebyshev polynomials. MAR solutions 
to this problem have been published based on the static-part inver- 
sion [88], and on the analytical solution to a flat strip as a degener- 
ate fonn of an elliptic cylinder [S9]. A dual counterpart of this 
geometry is a two-dimensional model of a waveguide multi-arm 
junction, where the elementary scatterer is an infinitely-flanged 
slot (Figure 8b). A single-flanged-slot analysis with a static-part 
inversion was done in [90, 911, and step discontinuities in 
waveguides (Figure Sc) were solved in [92, 931. A junction analy- 
sis, based on the elliptic-function solution to a single slot, was con- 
sidered in [94]. 

Worth mentioning is that the method of [88] has been 
extended in [95] to treat polygonal cylinders with circularly curved 
facets (Figure Sd). 

Figure 7. Arbitrary-shape smooth geometries: (a) A two- 
dimensional metal or material scatterer, (b) a three-dimen- 
sional inhomogeneous dielectric particle. 

-I - 

Figure 8. Piecewise-smooth two-dimensional geometries: (a) a 
flat-facet polygonal cylinder, (b) a waveguide joint, (c) a 
stepped waveguide circuit, and (d) a polygonal cylinder with 
circularly curved facets. 
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Figure 9. Two-dimensional geometries of scatterers in flat-lay- 
ered media: (a) a finite strip array on a dielectric substrate, (b) 
a circularly curved strip and (c) a circular dielectric cylinder 
near a dielectric slab, and (d) a smooth cylindrical inbomoge- 
neity in a slab. 

5.5 Scatterers in layered media 

Extensions of all thc above-mentioned MAR solutions to 
similar scatterers embedded into a flat-layered medium with 
piecewise-constant material parameters are possible. This i s  due to 
the fact that the corresponding Green's function (available analyti- 
cally in the transform domain) has the same type of singularity as a 
free-space countcrpart. Extracting out this main part from the ker- 
nel of an integral equation, and handling it in the same way as for 
free-spacc scattering, leads to a regularized second-kind equation 
with a modified smooth kernel. The latter accounts for the conti- 
nuity conditions across the layered-medium boundaries. The 
matrix elements of the discretized equation obtain additional terms, 
associated with the effect ofthe layers. MAR solutions ofthis type 
have been reported for the flat [96-981 and circular PEC strips [99- 
1011, on and ncar to a material interface (Figures 9a, 9b), and in a 
dielectric-sidb waveguide. Besides, in two dimensions, circular 
[102-104] and arbitrarily sinooth cylinders [I051 in a layered 
medium (Figures 9c, 9d) have been solved; applications to the 
CAD of surface-wave band-stop filters were studied in [15]. In 
combined geometries, the expansion of the cylindrical waves in 
terms of planc wavcs (given by the Fourier integrals) is involvcd, 
and hence the matrix elements contain numerical integrations. In 
three-dimensions, plane-wave scattering by a PEC disk, on or near 
an interface, has been analyzed in [56]. 

In the case of circular-cylindrical and spherical open-screen 
scatterers, MAR solutions are easily modified for inhomogeneous 
coaxial and concentric cylindrically and spherically-layered 
media [106-1 l l ]  (Figures loa, lob). Non-coaxial geometries, such 
as a confocal rcsonator with an inhomogeneity [I121 and a reflec- 
tor in a radome [ 1131 (Figures IOc, IOd), have been solved as well, 
although new infinite series appear, due to using the addition theo- 
rems for cylindrical iunctions. The MAR approach of [96] has 
been extended in [114] to the case of a PEC strip biiried in a 
dielectnc circular cylinder (Figure 1 la). As an example of a three- 
dimensional mixed geometly, an elegant MAR-type solution has 
been given in [I151 for guided-mode scattering from a spherical 
particle in a circular dielectric waveguide (Figure l lb),  based on 
the expansion of sphcrical wave iunctions in terms of cylindrical 
vector wave functions. 

A more complicated case of a mixed layered geometry is the 
scattering of waves from localized scatterers in periodic media, 
for example, near a periodic surface. This analysis is based on the 
generalized Fourier-integral transformation, taking into account 
that in the transform domain, the field is represented as a snies in 
the Floqnet-Rayleigh space hannonics. A two-dimensional model 
OS an open resonator, formed by a circularly-curved PEC strip and 
a periodic flat-strip grating (Figure l lc) ,  was studied in [99, 1161 
(static-pair inversion), and a circular cylinder above a sinusoidal 
interface (Figure 1 Id) was considered in [117] (free-space cylinder 
inversion). 

5.6 Analytical solutions 

As has been emphasized, MAR solutions, based on the 
Fredhalm second-kind matrix cquations, have a guaranteed point- 
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Figure 10. Geometries of scatterers in circular-cylindrical and 
spherical layered media: (a) a circular slit cylinder and (b) a 
spherical-circular cap with coaxial and concentric material 
fillings or coatings, (e) a twwdimensional open resonator of 
two circularly curved strips with a circular dielectric rod, and 
(d) a two-dimensional circular-reflector antenna inside a cir- 
cular dielectric radome. 

Figure 11. Combined geometries: (a) a flat strip and (b) a 
spherical particle inside a circular dielectric cylinder, (c) a cir- 
cularly curved strip near an infinite flat-strip grating, and (d) a 
circular cylinder over a periodic interface. 



wise convergence, and thus a controlled accuracy of numerical 
results. Depending on the nature of the inverted part, the number of 
equations needed for a practical two-to-three-digit accuracy is usu- 
ally slightly greater than, respectively, the electrical dimension of 
the scatterer (see Figures 1 and 2), or its inverse value, or the nor- 
malized deviation of the surface from the canonical shape, in terms 
of both distance and curvature. In fact, the norm of the compact 
operator is always proportional to one of the ahove-men- 
tioned values, denoted as, say, K . This enables one to exploit an 
important featue of the Fredholm second-kind equations. Provided 
that I ~ A ( K ) I I ~  < 1, which can always he satisfied for a small enough 

K , an iterative solution to the above equations is given formally by 
the Nenmam-operator series 

m 

x = cp)" B ,  
S=O 

(17) 

which converges to the exact solution, by norm in K Hence, one 
can avoid inverting Equation (Z), at least in a certain domain of 
parameters. For example, in 1651 it was demonstrated that the low- 
frequency and high-frequency MAR integral equations in PEC flat- 
strip scattering have overlapping domains of the Neumaun series 
convergence. This is the greatest hit of MAR, as it completely 
eliminates the need of solving a matrix. Besides numerical effi- 
ciency, this has another attractive consequence. On expanding 
Equation (17) in terms of the power series of K ,  one obtains, ana- 
lytically, rigorous asymptotic formulas for the low-frequency or 
high-frequency scattering, or the scattering from a nearly-canonical 
object. Such asymptotics have been published for PEC flat [65, 
118-121] and circular [40, 801 strips, finite pipes [53, 1221, disks 
[56, 681, a spherical cap [59], and PEC and imperfect strip gratings 
[67, 791. What is worth noting is that this can be done for various 
excitations specified by B plane or cylindrical waves, a complex 
source-point beam, a surface wave in the layered-media scattering, 
etc. For dielectric, material, or clnral scatterers, another small 
parameter can be used in the asymptotic solution: this is the con- 
trast between a scatterer and a host medium, in terms of material 
constants. In [IO21 and [115], approximate solutions of this kind 
were obtained for cylindrical and spherical inhomogeneities in the 
slab and fiber waveguides, respectively. 

5.7 Eigenvalue problems 

These problems are closely tied to the wave-scattering proh- 
lems. They can be classified as either natural-frequency or natural- 
wave problems, although other eigen-parameters can he consid- 
ered. The natural-wave problems appear only in the analysis of 
infinite cylindrical geometries, assuming a traveling-wave-field 

solution (i.e., - e-zkr+iJz ). Correspondingly, the complex 
parameter, the eigenvalues of which are to be determined, is either 
the normalized frequency, k, or the modal wavenumber, p (the 
propagation constant). What is important, in either case, is that a 
MAR solution leads to a homogeneous equation analogous to the 
scattering problem: 

X + a ( k , P ) X  = 0 .  (18) 

This is a Fredholm operator equation in H, with compact operator 
A normally being a continuous function of the geometrical 
parameters and a meromorphic function of the material parameters, 
frequency, and modal wavenumher. Hence, due to the Steinherg 

Figure 12. Regular waveguide geometries: (a) planar slot and 
(b) microstrip lines, (e) circular cylindrical microstrip and slot 
lines, and (d) an arbitrary-cross-section dielectric waveguide. 

theorems [lZ], it is guaranteed that the eigenvalues form a discrete 
set on a complex k plane (in the three-dimensional case), or on a 
logarithmic Riemann k or p surface (in the two-dimensional case 
and for natural waves). There are no finite accumulation points; 
eigenvalues can appear or disappear only at those values of the 
other parameters where continuity or analyticity of A is lost. 
Moreover, after discretization, the determinant of the infinite- 
dimensional matrix Det ( I  + A )  exists as a function of a parameter, 
and its zeroes are the needed k or /3 eigenvalues. The latter are 
piece-wise continuous or piece-wise analytic functions of geomet- 
rical and material parameters: these properties can he lost only at 
the points where two or more eigenvalues coalesce. From a practi- 
cal viewpoint, it is important that eigenvalues can he determined 
numerically: the convergence of discretization schemes is guaran- 
teed, the number of equations needed being dependent on the 
desired accuracy and the nature of the inverted part. No spurious 
eigenvalues appear, unlike many approximate numerical methods. 
Note that nothing of the above can he established for an infinite- 
matrix equation of the first kind, which is common in conventional 
Moment-Method analyses. 

Additionally, if a corresponding parameter K is small, then 
the determinant is quasi-diagonal, and the eigenvalues of k or p 
can be obtained in the form of an asymptotic series. Such an ana- 
lytical study has been done for a PEC axially-slit cylinder [123, 
1071 and a spherical cap [60], assuming a narrow slot or a small 
circular aperture, respectively. These asymptotics serve as a perfect 
starting guess when searching for eigenvalues numerically, with a 
Newton or another iterative algorithm MAR-based numerical 
analyses of natural-frequency problems have been published for a 
two-dimensional model of an open PEC two-mirror resonator 
[124], and for flat-strip gratings [125]. Natural-wave problems 
have been studied with the MAR for the dominant modes of a pla- 
nar strip and slot lines (Figures 12a, 12b) in [126-1291, for princi- 
pal and higher-order modes of circular-cylindrical strip and slot 
lines (Figure 12c) in [130-1321, for arbitrq-cross-section dielec- 
tric waveguides (Figure 12d) in [13, 1331, and recently for gener- 
alized slot lines [134] and Gouban-type striplines [135]. Formal 
MAR solutions (homogeneous matrix equations) have also been 
published for periodic waveguides: a PEC circular waveguide with 
periodically-cut transverse slots [136], a helically-slit guide [137], 
and a PEC plane-strip grating on a non-reciprocal substrate [ I  371. 
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6. Conclusions 

Summarizing, by using the MAR it is possible to overcome 
many difficulties encountcred in conventional Moment-Method 
solutions. The merits of‘ the MAR are numerous: exact solution 
existence is establishcd, a numerical solution can be as accurate as 
the machine’s precision, rigorous asymptotic formulas can be 
derived. Computationally, the M4R results in a small matrix size 
for a practical accuracy, and sometimes no numerical integrations 
are needed for filling the matrix. Thus, the cost ofiMAR algorithms 
is low in terms o l  both CPU time and memory. A common feature 
is that both power conservation and reciprocity are satisfied at the 
machinc-prccision level, independently of the number of equations, 
whatever it is. The condition number is small and stable, not 
growing with mesh refinement or increasing with the number of 
basis functions. The latter fact means that conjugate-gradient 
numerical algorithms are vcry promising, even in spite of a possi- 
ble squaring of the condition number; this has already been empha- 
sized in [139]. Using fast iterative methods, applied to the MAR 
matrix equations with static semi-inversion, it is probably possible 
to perform an accurate full-wave desktop analysis of the Arecibo 
reflector. However, the same thing c m  be done more economically 
by using a high-frequency semi-inversion, although this has not yet 
been extended to curved screens. Worth noting is that although the 
advantages of analytical regularization are obvious, a fully nnmeri- 
cal eigenf‘unction-Galerkin scheme can work out as well. This 
technique was recently developed in patch-antenna analysis [140]: 
static eigenfunctions were pre-computed by a conventional roof- 
top MOM scheme, and then used as a global expansion basis in a 
dynamic solution. A full description of this technique is given in 
[141], where favorable convergence properties and high numerical 
efficiency are noted. 

From a practical viewpoint, it is also important that the accu- 
racy of thc MAR is uniform, including resonances, both in near- 
field and far-field predictions. Here, one must be reminded that 
near shav resonances, conventional Moment-Method and FDTD 
solutions suffer heavy inaccuracies [SI, which cannot be removed, 
in principle. All this makes MAR-based algorithms perfect candi- 
dates for CAD software in the numerical optimization of multi- 
element two-dimensional and three-dimensional scatterers in the 
so-called resonant range, where interaction between separate ele- 
ments plays an important role. In fact, this is already used in 
waveguide circuit optimization [SI; not only simple geometries, 
but quite complicated two-dimensional models of reflector anten- 
nas, open resonators, and open waveguides have been accurately 
studied in [112, 1131, showing a variety of features not predicted 
by approximate techniques. The “demerits” of the MAR can be 
seen in more-painful mathematical work and greater human-time 
expenditures. Generally, this leads one to an old dilemma between 
specialized and universal algorithms. However, a tradeoff between 
efficiency and versatility is not enough: first of all, both algorithms 
must be convergent. In the neighboring fields of engineering sci- 
ence that rely on numerical simulations, today it is accuracy that 
plays a decisive role, followed by the cost comparison between 
equally accurate algorithms [2, 31. In view of the increased pres- 
sure of CAD and CAE demands, probably the same should be 
done, sooner or later, in computational electromagnetics. 
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8. Post-Conclusion: An editorial comment 

Taking advantage of the Magazine article style, it seems pos- 
sible to make one remark of a non-electromagnetic character. A 
close view of the partial list of MAR-related publications, below, 
shows that most of the authors are of Soviet (now Ukrainian and 
Russian) origin. This is not by chance: this is only the visible (i.e., 
available in English) top-of-iceberg list of publications. The roots 
of this phenomenon appear to be amazingly deep. In the USSR, the 
number of scientists was much greater than the number of comput- 
ers, which used to be second derivatives of IBM and CDC main 
frames. However, antenna-design engineers and simulation scien- 
tists faced the same problems as their colleagues in the USA, 
Europe, and Japan. How could they cope with these problems, 
without sophisticated hardware? This review gives a partial reply: 
by means of a deeper, on average, usage of analytical and special- 
ized-function-theoretic methods. The same is valid even more in 
gas and fluid dynamics, plasma science, and nuclear fusion. So, 
adding the ambitious word new to the title of a new MAR-related 
paper (as in [37, 54, 1 101) can be risky, without a glance to the 
“East.” One may ask here: and why is it the USSR had failed to 
develop adequate computers? To my belief, the explanation lies 
not in the economy. Landslide implementation of desktop PCs and 
workstations in research and development in the West was a logi- 
cal product of progress in a relatively free society. But in the 
USSR, it was something intolera.bie. Computers did not obey Party 
discipline. Instead, they promised the terrifying prospective of 
many thousands of educated dissidents able to write and print mil- 
lions of critical pages. That is why “cybernetics,” as computer sci- 
ence was called in the USSR, together with genetics, were labeled 
early-on the two “call-girls in the service of capitalism,” and 
severely suppressed until the 60s. (In the USSR’s number-one uni- 
versity, Moscow State University, a department of cybernetics was 
opened only in 1969.) Oppositely, mathematics and physics were 
considered regular and useful ladies; after successful development 
of nuclear weapons and ballistic; missiles, they were promoted by 
all means. So, finally, there is no surprise that genetic a1gorithrns 
come to electromagnetics from the “West.” But equally, there is no 
surprise that MAR comes from the “East.” Both, apparently, have 
come to stay. 
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Introducing Feature Article Author 

Alexander I. Nosich was born in 1953 in Kharkov, Ukraine. 
He graduated from the Radio Physics Department of Kharkov State 
University in 1975. He received the PhD and DSc degrees in radio 
physics from the same university in 1979 and 1990, respectively. 
Since 1978, he has been on the research staff of the Institute of 
Radiophysics and Electronics (IRE) of the Ukrainian Academy of 
Sciences, in Kharkov. In 1992-1998, he held research fellowships 
and visiting professorships at Bilkent University, Ankara, Turkey; 
Kumamoto University, Gifu University, and Chuo University, 
Tokyo, Japan; University of Rennes 1, France; and Torino Poly- 
technical University, Italy. Currently, he is with the IRE, Kharkov, 
as a leading scientist in the Department of Computational Electro- 
magnetics. 



nis rrsearch interests include analytical regularization, free- 
space and open-waveguide scattering, complex mode behavior, 
radar-cross-section analysis, and antenna simulation. In 1995, he 
was the organizer and Chairman of the IEEE Al-S East Ukraine 
Chapter, the first one in the former Soviet Union. Since 1995, he 
has been on the editorial board of Microwave and Optical Tech- 
nology Letieru. In 1990-1998, he was the organizer and TPC Co- 
Chairman of the series of international conferences Mathematical 
Methods in Electromagnetic Theory (MMET), held in Ukraine. .I 

Report on the ANTEM ‘98 
Symposium 

The ANTEM (Antenna Technology and Applied 
Electromagnetics) Symposium has been held biannually since 
1986. On August 10-12, 1998, the seventh ANTEM Symposium 
was held at the Chateau Laurier Hotel in Ottawa, Ontario, Canada. 
This was the second time the Symposium has been held in Ottawa, 
following a very successful year in 1994. The symposium had 156 
scheduled papers, with one-third of them from outside Canada. The 
conference was quite successful, with over 175 participants from 
15 countries besides Canada attending and enjoying the beautiful 
city of Ottawa. The conference continued to he one of the most 
economical, due to sponsorship from 10 Canadian companies. 

Symposium participants presented their work on the latest 
developments in antenna technology and applied electromagnetics, 
in areas including personal communications, satellite antennas, and 
microwave electronics. This year, the customary sessions by inter- 
national researchers in the antenna and electromagnetic fields and 
the special session profiling Canadian industry, held for the second 
time this year, were complemented by three keynote addresses and 
one special plenary session. 

Emerging areas of research 

Emerging areas of research were highlighted with presenta- 
tions by three international leaders in their fields: 

“Micromachining for Microwave and Millimeter-Wave Systems,” 
Prof. Gabriel M. Reheiz, Department of Electrical Engineering and 
Computer Science, University of Michigan, Ann Arbor, MI, USA 

“Recent Progress in Reflector Antenna Analysis and Design,” Dr. 
Trevor S. Bird, CSIRO Telecommunications and Industrial Phys- 
ics, Epping, Australia 

“Emerging Array Antenna Technologies at JPL,” Dr. John Huang, 
Jet Propulsion Laboratory, California Institute of Technology, 
Pasadena, CA, USA 

Emerging wideband wireless delivery systems 

“Emerging Wideband Wireless Delivery Systems” was the 
title and theme of a special plenary session, with representatives 
from major industry leaders in satellite and terrestrial wideband 
delivery systems. The session focused particularly on requirements 

placed on the RF technology for the temiinals for emerging 
broadband wireless systems. 

Satellite Widehand Service Delivery Systems 

Teledesic: Hugh Malone, “A Motorola Ka-Band Wideband 
Low Earth Orbit System” 

Astrolink: Kungta K. Chow, “A Lockheed-Martin Ka-Band 
Wideband GEO System” 

Skybridge: Pierre Fraise, “An Alcatel-Space Ku-Band Wide- 
band Low Earth Orbit System” 

Terrestrial Point-to-Multipoint Wideband Wireless Delivery Sys- 
tems 

Lucent Broadband Networks Division (ex HP): G;uy Labelle, 
“A Local Multipoint Distribution System” 

Nortel Broadband Wireless Access Division: Paul Astell, Steve 
Rayment, Michael Van Der Tol, “Wideband Ka-Band Delivery 
Systems” 

Proceedings and future plans 

The proceedings of the :symposium are available from the 
Department of Electrical and Computer Engineering, University of 
Manitoba, Winnipeg, Manitoba, Canada, R3T 5V6. ANTEM 2000 
is planned for August 2000, in its birthplace of Winnipeg, Mani- 
toba, Canada. The organizing committee promises to ensure that 
ANTEM 2000 will be a major event, worthy of international par- 
ticipation. 
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