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Chapter 9

Green’s Function-Dual Series Approach
in Wave Scattering by Combined
Resonant Scatterers

'y

Alexander I. Nosich

1. INTRODUCTION

‘1.1 Historical Background

As is well known in general, rigorous scattering and diffraction theory is based on the
theory of boundary-value problems, therefore the progress here is closely tied to that of this
branch of mathematics. So, as two-dimensional wave scattering problems can be reduced to
singular integral equations by using a generalized potential theory approach, the Fredholm’s
theory of integral equations is of great importance [1]. Besides, the theory of Fourier trans-
forms and functions of complex variable enables one to solve integral equations of a certain
class [2]. This approach is called the Wiener-Hopf (WH) technique; one delivers exact solu-
tions of such canonical diffraction problems as that for a semiinfinite zero-thickness plate,
and produces effective approximate solutions for a great number of modified geometries.

“All these problems are known to be rearrangable in the form of equivalent dual integral
" equations. '

The development of the Riemann-Hilbert Problem (RHP) approach can be considered

as another great event in diffraction theory, although it is still less known than WH one. This
“technique delivers exact solution of certain dual series equations. In the core of the approach

there lies a problem about reconstruction of an analytical function X (z) of complex variable

2z = z + iy whose limiting values X*(z) from inside and outside of a closed finite or infinite
- curve L @i)satisfy the following condition

X¥(z0) = Az0) X~ (20) =Blx0), 20 € L ' )

“with known functions A(zp) and B(z) called the coefficient and the free term of RHP,
respectively.

Actually, the solution of this problem was first given by Carleman (3] but thorough
"investigation of the RHP theory and general solution of (1) for L being an arbitrary curve
'can be found in the books by Muskhelishvili [4] and Gakhov [5]. Agranovich, Marchenko
' and Shestopalov [6] were the first who applied this approach to particular scattering problem
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of plane waves diffraction by a plane-strip periodic grating. They discretized it in terms of
Floquet—l@oprier series expansion, reduced to the dual series equations for unknown coeffi-
cients, applied RHP ,solution of [3-5], and obtained an infinite Fredholm system of linear
algebraic equations of the second kind. The principal point of derivations was in taking an-
alytically all the integrals for matrix elements due to the fact that here contour L is simply
a circle. As a result all the scattering characteristics can be obtained with desired accuracy
through a fully correct and simple numerical procedure. Thus unlike the WH the RHP
approach is of combined analytical-numerical nature implying both the analytical inversion
of a certain part of the initial operator and the highly-efficient numerical inversion of the
remaining part.

Thereafter this approach has been expanded upon a wide class of periodic zero-thickness
9.2 D scatterers with perfect conductivity (see Refs.[7-25]). Among them there are multiele-
ment and multilayer strip gratings (Tretyakov, Litvinenko, Kazansky, Podolsky et al., 1963-
75), strip irises in a waveguide (Shcherbak, 1965-75), periodically slitted circle (Tretyakov,
Sologub et al., 1967), circumferentially and helically slitted circular waveguides (Agranovich,
Sologub, 1964-67), open circular screen (Koshparionok, 1972, Nosich, 1978, Ziolkowski,
1984), infinite grating of circular screens (Veliev, 1977), finite number of circular screens
(Melezhik, Veliev, Veremey, 1980-86), slitted infinite cone (Sologub, Doroshenko, 1985~
88), open resonators (Poyedinchuk, Brovenko, 1980-90), open strip/slot lines on circular
substrates (Nosich, Svezhentsev, 1980-89). Due to the periodicity of boundaries all these
problems can be rearranged in the form of dual series equations with the set of functions
exp(ing),n = 0,%1,... as a kernel (so-called trigonometric kernel due to the known rep-
resentation exp(iny) = cosny + isinnp). Consequently, there appears an RHP with the
contour L being a unit circle L°.

As for the most impressive amount of fundamental and applied results, in ’60s and *70s
they were obtained in the analysis of diffraction by strip gratings. However by ’80s the focus
has been shifted to a circular nonclosed screen and collections of such screens. Recently, it
has been shown that numerical analysis of the 2— D scattering from an arbitrary smooth open
screen can be efficiently reduced to canonical (circular) case by appropriate parametrization
(26].

Selected works in this field until 1986 were duplicated in the books by Shestopalov
[27-30] (in Russian). Relevant problems were analysed by Litvinenko and Salnikova [31].
Ziolkowski [32, 33] was the only author in the West who exploited this approach. All the
solutions mentioned above can be considered as "numerically rigorous” because they are not
fully analytical but provide the results with any degree of approximation. The restrictions
are of purely computational nature as one has to store and process a matrix equation of the
order somewhat greater than characteristic dimension to wavelength ratio.

1.2 On the Extention of the Range of Applications.

One can conclude that probably all canonical structures treatable by conventional RHP
technique have already been analyzed. Further development leading to the extention of
the range of applications requires some new ideas. One of those can be seen in combining
conventional RHP method with other classical methods for the analysis of combined struc-
tures. For example, although a free-space diffraction is of great value both for microwave
theory and applications, it is often desirable to take into account correctly the real inhomo-
geneous environment of the scatterer. An important class of such problems connected with
a plane-parallel layered dielectric medium with imbedded localized obstacles arises. As for
the open screen, examples can be found in modelling a reflector antenna radiation in the
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presence of an interface between two media, dielectric-slab modes scattering and conversion
by screen-like inhomogeneities, excitation of and energy leakage from a multiple-mirror open
resonator containing a material slab, etc. Another related class of scattering problems arises
for screens near infinite plane-periodic boundaries, i.e. near periodic diffraction gratings.
Such problems are generated by the necessity of simulation of open resonators with grating
inhomogeneities for millimeter-wave oscillators and spectroscopic cells.

So far, all these problems have never been analysed correctly in full-wave dynamic

~ formulation. The aim of this treatment is to demonstrate that they are solvable by the

RHP approach as well, provided that this method is combined with the Green’s function
technique. It means that one must firstly construct the Green’s function of 2 — D space
containing, all the elements except the screen, and further apply the generalized potential
theory and RHP-based inversion procedure.

As for a dielectric-layered medium, the 2 — D Green’s functions are available in explicit
form as Fourier-type integrals with exactly known transforms. For a space with a grating the
Green’s functions are not available analytically, but nevertheless for many particular gratings
there exist elfective numerical approaches in Fourier transform domain. Those are known
for gratings of plane or inclined strips, of semi-infinite planes, of circular or rectangular rods,
for echelette etc., and solutions can be found with any desired accuracy.

Due to infinite boundaries of a slab or a grating the formulation of mentioned problems
has to be changed in comparison to the free-space diffraction. The well known Sommer-
feld condition of radiation is not necessarily valid here, and to ensure the uniqueness of
the solution it has to be replaced by some other one adequate to the combined geometry.
This question has been analysed by Nosich [34] who showed that the modified condition of
radiation contains all the natural guided (undecaymg) modes of a slab. The same is valid
for gratings provided that such modes do exist.

2. MATHEMATICAL FOUNDATIONS OF THE METHOD

The RHP technique is a powerful tool of solving wave scattering and diffraction problems
and requires knowlege of the theory of analytical functions of complex variable and Cauchy-
type integrals. In this section we shall summarize main information necessary for futher
sections and give a method of solution for canonical dual series equations.

A

2.1 About the RHP in a Complex Plane

Consider a simple smooth nonintersecting closed curve L in the plane of complex vari-
able z = 2 + iy, and define two open domains QF such that QT = intL and Q~ = extL as
shown in Fig.1.

Let X(z) be a sectionally analytical function such that X(2) = X*(z) for 2 € Q*. If we
assume that 1) limiting values of X (z) from inside and from outside of L, namely X%(z),
zg € L, satisly a transmission condition given by

)(-+(ZU) - X~ (Z[]) = B(ZD) (2)

with at least IIdlder-continuous known function B(zg) as a free term, and 2) X'(z) is vanishing
at |z] — co, then it is known that the whole function X (z) can be expressed in the form of

Cauchy integral
1 B(zg)d
X(z) = __/...(_M (3)

2w zp— Z
L
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‘Fig. 1. Complex z-plane separated to bounded and unbounded domains by a closed curve L.

For such integrals, the Plemelj-Sokhotskii formulas are valid, giving the limiting values
Xi (Zo) as

X*(20) = X(20) % 5 B(20) (4)

The RHP is a somewhat generalized version of the problem (2), and involves into the
treatment another known function A(z) on the curve L , of the same class as B(zo), so that

X*+(z0) — Al0)X~(20) = Blza), 1ol (5)

Further generalizations can be introduced by setting coefficient A(zq) to be a discontin-
wous function on L , and by setting L to be an open curve. Besides, the behaviour of X(2)
at the infinity can be not necessarily vanishing but described by a polynomial function of
z. Consider a boundary value problem about the reconstruction of an analytical function
X (z) after the boundary expressions

X*(z20)+ X7 (20) = B(z), z2€MCL (6a)

X*(20)~ X"(2)=0, 2 €S=I\M (6h)

given at the open smooth enough curves M and S completing each other to a closed curve
L

The equation (6b) states that functions X*(z) continue analytically across S. Thus,
they represent the same analytical function of z in Q%* respectively. The two of equations
(6) can be rearranged as a single one by introducing discontinuous coefficient and free term
functions

s 1, 20 € M
= 7
A(ZO) { -1, z €S M
ey B(z), 2 €M
= Z[] ] ZO g
= 8
Hiea) { 0, €S ()

so that one obtains

X*(20) + A(20) X (20) = B(20) (9)
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Note that equation (9) is valid on the whole closed curve L.

To make further derivations, it is necessary to specify the behaviour of unknown function
X(z) at infinity and at the endpoints of the open curve M, where the functions A(z) and
B(z) loose continuity.

We shall assume that X(2) is vanishing as |z| — oo, however the functions of different
behaviour, polynomial in general, can be treated by the RHP technique as well. Besides,
we shall assume that X' (z) has singularities of the order 1/2 at each of two endpoints of M.
This behaviour is typical for electromagnetic problems of wave scattering and diffraction by
perfectly conducting zero-thickness screens. However, in other applications this is not true,
like, e.g., in fluid and gas dynamics where the velocity potential function has no singularity
at the rear edge of a thin hard wing. Basically, the RHP approach enables one to treat any
singularities of the order less than 1, and not necessarily equal to each other.

2.2 Solution of an RHP Typical for Electromagnetics

Guided by the above assumptions, we can introduce a characteristic function R(z) of

‘the problem under consideration, such that the function X(z) R(z) is regular in the whole

complex plane including endpoints of M. The procedure of seeking this function is described
in [4,5] and brings ;
R(z) = (z — a))V?(z — a3)'/? (10)

. with z = a; » for endpoints, and the branch chosen so that limits differ by sign : if z € Qi,

zo € M then for z — z, R(z) — R¥(20) = £R*(2). Thus, the characteristic function
satisfies a homogeneous RHP on the closed contour L

1 1

BrGe) T R(r) (1)

Now, by introducting new functions
Y(z) = X(z)R(z) (12)
D(z9) = B(z) R (20) (13)

we come to an RHP with continuous coefficient function, valid on a closed curve L

-

Y*(20) = Y™ (20) = D(z) (14)

As the characteristic function has a simple pole at infinity due to the fact that R(z) =
O(z) as z — oo, it is known [4,5] that the solution (3) has to be modified by adding a

constant C, so that
(= o [ ki

el Zp— 2
L

G (15)

Rewriting (15) for the function X(z) we find

1 1 /R+(20)B(ZQ)dZU + C (16)

Aiz) = %R(z) Zp—z R(z)

M

Expression (16) delivers the exact solution of initial transition problem of Riemann-
Hilbert (6) with mentioned assumptions about the behaviour at infinity and at the endpoints
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of curve M. However, this solution is not much effective. computationally because of the
singular character of the integral term in the right hand part. As for the constant C, its
value can usually be obtained due to certain additional conditions following from the physical
nature of initial problem which generates an RHP like (6).

2.3 Exact Solution of Canonical Dual Series Equations

" Consider the following dual series equations with ”trigonometric” kernel for infinite
sequence of coefficients p,, n =0,%£1,...

Y halnle®™® = F(e*),  peM=(8<|p| <) (172)
(n)
S hae™ =0, peS=(lp|<8) (17b)
(n)

where the sums are taken from —oo to co.

Assuming that the vector g = {u,}5%_, is of the space Iy, and series in (17) are
term-by-term differentiable, we replace (17b) by its derivative with respect to ¢ and add
the identity at ¢ = 0, the center point the interval S. Denoting f = 7 — 6, ¢ = 7 + ¢ and

F'(e¥) = F(e"¥~'), we have

S kalnle™® 0 = Fi(e),  ype M = (jy| < f) (18a)
(n)

Z#nnein(v,b—w) =0, pes = (ﬁf [¥] < =) (18b)
(n) 2

D #n =0 | : - (18¢)
(n) :

By introducing functions X*(z) of complex variable z = re*¥ such that

Xtz =% Y pan(-1)"2" (19)
n>0n<0

we come to dual funtional equations

XHE) + X~ (V) = F'(e¥), veM (20a)
XtEWy 2 X (e =0 pes (20b)

which constitute an RHP of the type considered above with a curve L = M’US’ being a

unit circle L2, If X(z), like before, is vanishing at infinity and has singularities of the order
of 1/2 at the endpoints z = e then the solution is given by the equation (16).

However, we are interested in obtaining the coefficients y,, describing the function X(2)
exactly on the curve L. So, we must make use of Plemelj-Sokhotskii formulas for the limiting
values of X (z) and fiud for ¢,40 € L

+ ntl
Xt - X~() = Lt [EOEOR ocqu) 1
M!

-

rn

al
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J t.he where
| its Qo) = 1/R*(to), to € M’
Bt Y7 fes =L
As the definition (19) yields
X*(to) = X~ (to) = ) pan(=1)"ei"¥o
Inite (n)
we can make a Fourier inversion of (21) and obtain
17a) " ;
: pmm(=1)" = Vo (I, B) + 2C R (6), m=0,%+1,... (22)
17b) where we denoted
1 F | 1 [ V(F,¢to)emimbogy
_ 1 o\ /([ gi¥o)e—imbo gy — L 7, et )e” M 0 ddy
Vi (F ) = 5 [ e S o
) are A :
- add
- ; RY(4)F(t
» and V(F,e¥°) = PV / o Flelde
t — eito
M’
1 27r 1 —imy
(184 ' e i —"ﬂwu e”tmve
i52) ' I (8) = 57 /Q( Je o = o7 / R*‘(e“%)dwg
0 ‘ M '
‘18b) '
Setting m = 0 in (22),"we can exclude the constant C, so that
(18(1) ﬂnxTn(_l)m = _Vm IS [/(]Iz'm/RD (23)
Now, assume that the Fourier expansion of the free term function is available, that is
F‘(Eid’) = anehb (24)
(19) P
Then, obviously
"l F’ Z‘fﬂ V:::
(20a) (n)
(20b) where
e n __ 1 U"(e !ﬁ) —-inuj;
mg a i Vm R ﬂ:[ R+( "l’o) °dipy (25)
order : M/ ;
i 1 RY(4)e
- ] n f f = _—'P.V. _—"dt 2
X(2) un(to, f) = — ety (26)
mting i M’
if and (23) is reduced to
21 | sloigtn
@ (=1 = 3 fu (V2 = V@ R/ R) = 3 fu ¥
,% ) )
{
|
i
! —
i - 3 — Y.
| fa® 5 Pu F Ll —
| ’ % i) - | w

N_m.
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Besides, we have to add the equation following from (18c¢) to find the coefficient po:

<t

m (27)

po=—3 fa 3 (—1)’“;n

(n) (m#0)

Calculation of vn, V;* and Ry, requires a fine technique of integration in the complex
plane and was performed by Agranovich et al.[6]. In terms of Legendre polynomials Pp(cos B)
the results are as follows .

V. (cos B) = 2{;—21—) [Pf;(cosﬁ)PnH(cos,@) — Poy1(cos B) Pa(cos B)]
R (cos ) = %Pm (cos B), yr=yn-l (28)
(m#0) In )

\ g7

So, we can rewrite the obtained equations in the final form convenient for further
analysis .
fim = (=1)™ > faTinn(cos ) (29)
(n)

where

1 n—1
me_l(COf’B). m+#0

> Tn(cos B) = %Vﬂ__ll(cosﬁ), m=0,n#0 (30)
—111-”—;0§£, m=mn=0.

3. FREE-SPACE H-WAVE SCATTERING BY AN OPEN CIRCULAR
SCREEN

In this section, we treat the scattering of a plane H-polarized electromagnetic wave by
an infinitely long circular cylinder with a longitudinal slot, and develop the solution in detail,
As it was pointed out in Section 1.1, this problem was solved using the RIIP technique by
Koshparionok [14] (however, Sologub et al. [11] had obtained a more general solution for
N-slitted cylinder somewhat earlier). Later, based on this formal solution, Nosich [15] and
Ziolkowski [32] investigated numerically the resonances and far fields as well as near fields
and surface currents, respectively.

All field quantities are assumed to have time variation exp(—iwt)with w for the angular
frequency, and this time factor will be omitted throughout all further sections.

3.1 Formulation of the Problem

Consider the scattering of a plane wave incident normally upon zero-thickness perfectly
conducting circular nonclosed cylinder (screen), as shown in Fig. 2. The magnetic field
vector of the incident wave is assumed to be parallel to the axis z of the cylindrical coordinate
system (r, ¢, z) coaxial with the scatterer. The screen’s parameters are : radius a, angular

P —
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Fig. 2. On the plane-wave scattering from circular open screen in free space.

width 26, and those of the slot are: angular width 20 = 2(x — §) and position angle . Our
aim is to reduce the scattering problem to dual series equations, and to solve (regularize)
them by means of the RHP technique.

As the problem is essentially scalar and 2 — D one, total field can be characterized by
the single H, component presented by the sum of incident and scattered field terms

H(F) = H™ () + () = & 4 HY(7), 7= (r,) (31)
The function H*°(7) has to satisfy the 2 — D Helmbholtz equation
(A+B)H() =0, k=w/ec (32)

everywhere off the contour A of the screen, and the boundary condition on M of the
Neumann type '

) .
—(H"™ 4+ H**) =0, rEM (33)
an

Besides, due to the sharp edges of the screen, we need to impose a kind of restriction on the’
field behavior, namely, we demand that field energy is limited inside any bounded domain
B

f(k2|H“|2 FIVHP)di< oo (34)
B

including the vicinity of the edge.
Finally, if Imk = 0, far from the scatterer the well known Somumerfeld condition of
radiation is demanded

irkr

1), 90 (e )me“‘f ()

It can be proved that the solution of the problem (31)-(35) is unique. To obtain this proof,
one has to assume that opposite is true and apply the Green’s formula

/(utlv — vAu)dF = / (ug_z = u%) d (36)
b 8D
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to the difference between two solutions u = H; — H and its complex conjugate v = HT—H3
within a bounded domain D (see Fig.2). By expanding D to the whole space exterior to M
(outer boundary being a circle) and using (35), one comes to the contradiction between the
left and right hand parts of the final expression and thus concludes that Hy = Hs.

3.2 Derivation and Regularization of Dual Series Equations

Taking into account the conditions (33)-(35), we apply the Green’s formula to the
unknown scattered field function H*°(7) and the 2 — D free-spate Green’s function

Gol7, ") = %Hé”(kh? =) (37)

within the same domain D — extM as before, and come to the conclusion that solution can

“be sought as a generalized double-layer potential

H*(F) = f p(F’)a—a-,Gu(F,r’)dF' G
mn
M
where ;
)= [HE)], ' eM (29)

is the unknown current density function (square brackets are for the jump of field function),

and n is the exterior unit normal vector.
Now we can enforce the boundary condition (33) to the function (38) that yields an

integro-differential equation
0 n 0 o .
— 7Y Go(7, 7 )i = ——H'"(7), P € M 40
2. [ M g ol FF = g HE), e M (40)
A
So far we have not yet exploited the fact that the contour M is a part of a circle. If we
take this into account, we can easily discretize our problem by expanding all the functions

in (40) in terms of angular exponents exp(ing), n=0q4&1,....
Indeed, on completing the current density function with identical zero at the slot S, we

expand it as follows

=Y . 2 ing
p(7) = i (Z),Uﬂe (41)
and immediately obtain a series equation for unknown coeflicients
S iae™® =0, @ES | (42)
(n)
Besides, by employing the well known addition theorem for cylindrical functions, we
have i
; Jo (ke YHy ' (kr), r>1r'Y . X
GD(F,F’) = i Z{ ' ( ) 1) ( ) ! }ex:l(w—‘.ﬂ ) (;13)
4 = Ju(kr)Hz ' (k2'), r <

After substituting the above series to (40), term-by-term integration and differentiation
(provided that functions are smooth enough) bring us another series equation valid on the

complementary curve A

S (k) B (ka)e™ = = bae™?, e M (44)
(m) (n)

.
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. I

with :
'.otxl’l—’f bs = 4" (Ba) (45)
1the
Here we exploited the known expansion of the exponent, that is
) eikz = e:’kr cos - Z z'"Jn(k?')eimp (46)
(n)
> the . ) ) :
Thus, equations (42) and (44) constitute the dual series problem for a vector of coefficients
L IT1 eu having a kernel of ”trigonometric” type. It is equivalent to the initial boundary-
(37) value problem if the function p(yp) is smooth enough to justify term-by-term differentiation
in (44). Besides, we derive an additional requirement specifying the functional class of the
n can sequence of p,, by applying the condition (34), say, to the domain » < a, namely
Z |in PFln+1] < o0 (47)
(38) )
Now we have to reduce the obtained dual series equations to those of canonical form. Inves-
(39) tigating asymptotic behavior of the product of cylindrical functions derivatives as [n| — oo,
’ we find that g '
tion), T (ka)HSY (ka) = —(ink®a®) ™ n| [1 + O(k%a®n~?)] (48)
d5 ali Therelore, after introducting the set of functions
An(ka) = |n| + in(ka) T, (ka) HSY (ka) (49)
(40) : » :
we find that the following equations are valid
If we J
ctions Zp,,ln]em"" = Z [Anpn — in(ka)?b,] e, f<le—@ol <7 ~ (50a)
g ‘ (n) (n)
, we .
D™ =0, lp—o| <8 (50D)
(41) (n)
We see that the left hand parts of (50a,b) have exactly the same form as the equations
investigated in Section 2.3. Thus, applying the RHP scheme as described above, we come
(42) to the infinite system of linear algebraic equations
ﬂm:ZAmahuﬂ'l'Bmy m:O,il,... (51)
ns, we (n)
where
(43)
Amn = Anfmﬂ(gg (PO) (52)
dati . =
211 o By = in(ka)? Y baTonn(9, o) (53)
(n)
Tmn(0,0) = (=1)™F"ei=mdeoT, (_ cos0) (54)
(44

with Ty, (-) given by (30).
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This infinite system can be rewritten as a single operator equation

(I — A)y =B (55)
where p = {pn )52 _ oo, operator I is that of identity and operator A = [|Amallf p=-co a1
be shown to be compact in the Hilbert space of la: p € I if Z lun|? < 00. Actually, a more

‘ ! : (n)
rapid convergence takes place as even Z |4‘| < oo due to the estimates
() mau
¢ c
Amal < — 56
l mnl |m i TIHTTII]‘/E]'HP/Q 1 |Ann‘ < n‘-’ ( )

which are established based on the known large-index behavior of cylindrical functions and
Legendre polynomials.

It means that (55) is a regularized operator equation in /5 with a canonical Fredholm
operator, and well known Iredholm’s theorems are valid : solution y does exist for every
real value of & and is unique. Further, this solution can be approximated with any desired
accuracy by means of truncation of matrix A = ||Amn||5 no_e, and vector {B}-_ for
all |m|, |n| > Ni» because the sequence of approximate solutions is guaranteed to converge
to exact one as Ny — co. In practice, a simple numerical rule has been verified : to provide
the accuracy of 0.1%, one has to take Ny =(entire part of) ka + 5. Finally, estimates (56)
enable one to check that condition (34) is really satisfied as || = O(|n|~3/?) with |n| — co.

So, however (51) gives a formal (i.e. not analytical) solution of the considered problem, it
can be treated as a numerically rigorous one due to being fully grounded from mathematisal

point of view.
3.3 Calculation of Near Field and Surface Current

According to (38), (41), (43) the field function is found to be

H(® = H™(# + Y _ pnha(kr, ka)e™® (57)
(n)
where
T (ka)H D (k) r>a
A (kr, ka)= i (58)
H O (ka) T (), r<a
Large-index asymptotics of cylindrical functions enable one to see that as |n| — co
i [ —(a/m)", r>a
A (ke ka) ~ — 59
a( T a) ﬂ'k(l{ (T‘/G)n, r<a ( )

Thus, the worst convergence is observed for 7 = @, and the same difficulty takes place
for the calculation of surface current density function

Jol9) = = [H(a+0,¢) = Ha = 0,¢)] = () (60)

from the Fourier series (41) converging as O(!n|'3/2).
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To improve the convergence, one can extract large-n asymptotics of g, and summarize
them explicitly (see [32]), but there is an alternative way. Let us substitute coefficients p,
taken from (51) into (41) and interchange the order of summation. This yields

9 ;

1) = 2= (=105, (0, — o) (61)
(n)
where
Tn = Dppn + in(ka)?b, (62)
Sa(8,0) =Y (=1)™e™ Tn(— cos §) (63)
(m)

The sums like (63) can be obtained analytically. Indeed,

_w'
Sn(g:?’) = -1 / Z Vn'::i(ur)e_imﬂdﬂ (64)
x  (m#0)
where we defined ¢’ =7 — ¢, v' = —cosf =cosl’, ¢’ =0 —= : =

Then we have to make use of integral expression (25) for V*~1(u’) and representation
(26) for v,(to, ), and take the integrals

Tl ] £ R-Y2(¢, )t (65)

where R(t,u) = t? — 2ut + 1, obtaining a set of recurrent expressions

Ip = In(2RY? 3 2t — 2u)
3 — RM? + uly
Al = t* U BYE (Ol = (n=1) Ty (66)

After integrating, the final result is as follows

2

1+ cos ¢’ 1+u Y2
8,¢) = Jii e e Sondiel
So(8,¢) = Ulp) n[ T (l+{1 7 costp’}

Sa(0,9) = U(p)(2cos ¢’ — 2u) /2612 3" G Qi (%) (67)
k=0

where U(p) =0ifpeSorlifpe M

Co=1

Ci=—v

Cr = Pr(v') — 2u' Pey(v') + Pi_a(u') (68)
Qi(z)=1

Qa(z) = (z + 3u')/2
nQu(z) =21+ (2n — Du'Qu_1(2) = (n — 1)Quoa(z) (69)
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N

Thus, the resulting expressions for Sn(8,¢) are products of smooth functions, step function
U(¢y), and a square root term of the precisely same form as needed by the edge condition (34).
The new series (61) now converges as O(|n|™3) and besides it satisfies the edge condition in

term-by-term manner and independently of the accuracy of finding pn- A similar procedure

can be used to enhance convergence of the series expressions for any other field component
at the circle » = a. These derivations show that all the operations preceding (51) are really
valid and the latter are equivalent to the initial problem.

3.4 Far-Field Scattering Characteristics

As for the far-field scattering characteristics, the field pattern introduced in (35) is
found from (57) to be
B(p) = Zp,,(-—i}".],’,(ka)ei""’ (70)
()
Besides, the total and backward scattering cross-sections (TSC and BSC) give the amount
of total scattered power and that of the fracture reflected back to the source, rsspectively.
In terms of p, coeflicients they are y

3

o
2 4 ‘
0= = [106)Pdp = T 2 lindakal (1)
S (n) )
4 ., 4 ol 9 y
oy = IR = 112 s T (ka)l (72).

(n)

In Figs. 3, 4, the typical frequency dependences of TSC and BSC are shown. In the event
of narrow slit (Fig.3), sharp resonances are observable due to the excitation of the damped
natural modes of the screen as a cavity-backed aperture. Exept the first, low-frequency, peak
all these modes originate from the eigenmodes of circular cavity, being shifted in frequency
(and splitted into pairs HZE, for m # 0) by cutting the slot. As for the low-frequency
resonance, it has a singular nature. Formally, any interior Neumann boundary-value problem
has the zero as the lowest eigenvalue but in electromagnetics the corresponding eigenfunction
happens to be identically zero everywhere. Cutting the slot shifts this zero value by a small
complex number, and the corresponding (generalized) eigenfunction is now not equal to zero.
This resonance is of the same nature as so-called Helmholtz mode of oscillations in acoustic
cavities investigated by Lord Rayleigh (35]. We denote it as Hoo, and address [lﬁ]@further‘
details. e

Note that all the peaks of TSC and BSC are of finite amplitude because all the per-
turbed eigenfrequencies are now complex numbers with negative imaginary parts found to
be proportional either to O(In~1!0) for H} . modes or to O(6*) for Hy,, modes (m # 0)
[15]. Helmholtz resonance is of a special interest as its eigenfrequency is

k~*1—21'9—1121'—‘f—1-1‘9 '
0p & nsin o + g™ s g (73)

tending to zero as 0 — 0. It means that the Helmholtz mode destroys the well kuown
Rayleigh rule for the H-scattering by small objects according to which TSC and BSC are
proportional to O(k%a*). Actually, at the resonant frequencyfgn, we have

A ,
o iy =R - D) (74)

e 1
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Fig. 3. Normalized total scattering cross-sections versus frequency parameter ka for closed circu-
lar bar and open screens with various apertures.
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e | 1- %,=180° £ ) 6=90°
2 - (j}u=0 }: C

st gy

Fig. 4. Frequency dependences of normalized backscattering cross-sections for three space posi-
tions of semicircular screen.

for a slitted cylinder (see also Section 3.5) with an almost isotropic scattering pattern ®(y).
From a physical point of view, at the exitation of H mode the slot is radiating as an
intensive secondary line source (as a pair of opposite-phased sources for H,,, mode), and
for Hyg mode the effect of cylinder on this radiation is very small. As the slot is widened,
Helmholtz-mode resonance transfers to the A/2 resonance of a curved strip.

There exist certain general properties of the scattered field valid for arbitrary shaped
scatterer. One of these features is formalized by the energy conservation equation (or so-

called Optical Theorem). To derive it, one has to apply Green’s formula (36) to the total
field function and its complex conjugate (i.e. take u = H = e 4+ H* v = H* )ina
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domain D shown in Fig.2. As D is expanded to the whole plane exterior to Af, one has to
use radiation condition (35) when integrating the fields products on dD. Taking account of
TSC definition (71) one obtains

' 4 4 "
0, = = Re®(0) = — - Re ?:) pin (=8 L (ka) s (75)

Thus, by comparing two expressions (71) and (75) one can judge about the accuracy of
numerical solution.

Another general property is known as reciprocity relationship which couples scattering
amplitudes for two mirror-opposite directions of plane wave incidence on the same scatterer.
In order to obtain it one has to apply the Green’s formula (36) within the same domain
D — extM once more, to the functions u = e* L and v = e 4+ H*¢. “Again, as
both functions satisfy Sommerfeld condition of radiation (35), the final result contains only
the forward scattering amplitudes, that is

Re®(0) = Re®(n) (76)

If a 2 — D scatterer has a plane of symmetry (as an open circular screen), its position
can be characterized through the angle « between this plane and y-axis. Taking into account
that two mirror directions of plane wave incidence along z-axis are equivalent to two mirror
orientations of the target at Za, we can conclude that

Re®(0, o) = Re®(0, —«) (77)

Thus, the forward scattering amplitude is invariant of the sign of the target position
angle « although the shape of the pattern can differ significantly. Fig. 5 demonstrates
several examples of this effect for H-scattering by a circular open screen.

The expressions obtained above lead to another conclusion about the TSC values : they
are the same for two mirror positions of the scatterer, that is :

os(a) = o4(—a) (78)

The check of this relationship gives another criterion of the accuracy of numerical so-
lution.

859, P =180°
1 - ka=0.1375 (“oo mode)
2 - ka=3,130 (HY‘I moda)

Fig. 5. Far-field scattering patterns at resonant frequencies for a narrow-slitted circular screen.
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3.5 Low-Frequency Asymptotic Solution

Although the solution of the studied problem is available numerically for arbitrary set
of parameters, equations (51) are also suitable for extracting some“valuable results analyti-
cally in the form of asymptotic series. Indeed, exloiting small-argument approximations for

cylindrical functions in the matrix elements, we find that -
g =max > 1Amal < e(1 + u)(ka)? (79)
(n)

where u = cosf. 7
It follows from (79) that for either ka — 0 or § = m — 6 — 0 (narrow strip case) we can
use a convergent iterative operator series

p=y AB (80)
=0

Similar but somewhat different iterative technique can be used for § — 0 (narrow slit
case), as

(}':;1;1275 {(]- = Amm)_l Z |Amﬂ}} < C(l - u?)(ka)2 (81]
(n#0)

This approach yeilds the following low-frequency asymptotics for the scatteri tter
L 10t
TSC and BSC (k = ka — 0) Al

1 i
D(p) =~ — FRHo + §m2(1 +u) [ng cos(p — o)

T
+ wmcosgp + -i—(l —u) cos(p — 2(,00)] (82)
where
i _i(14w) 1—2u—3u?
Uy = 2D(x.0) K Too CoS tpg — rc—-g-i-n-o—;—— cos 2(,00] (83)
1 irk?
D(k,0) = =— — &*
(h‘ ) Toa " (1 + 4 ) (84)
Too = Too(— cosf) = — Insin? g
and
Ty mm—z {|u0§2 (1 + 2x? cos* . + &% cos? ?—
k 2 2
2mRepo | 1 in?, 2 r i 2 gjy2 §
po | 1+ sin 5 ) cospo + 5 1 + sin 5 ) T sin® 5 cos 2(,00} } (85)

; 6 g g
+ 4K Repg cos® 3 C0s %o + 7K cos® 3 (1 + sin? 5 cos 2!p0> } (86)
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These formulas give asymptotic solutions uniform with, respect to the parameters  and
wo. They are valid for a small open circular screen of arbitrary width, from an arbitrary
positioned narrow strip to a circular cylinder, and describe also the resonant responce at the
Helmholtz mode frequency (x & kgoa). The main term of TSC and BSC at this situation is
given by (74). Note that this term does not depend on the slot position angle wo. Indeed,
as in H-scattering the induced current flows across the scatterer, there is no actual shadow
region on its surface, and the cavity excitation is equally efficient for any position of aperture.

The above analysis has been restricted to the case of H-polarized scattering. However,
the alternative case of E-polarization is treatable by the RHP technique as well [14]. The
diffraction of plane E-wave by an open circular screen was studied numerically in [36]. For
this polarization the only induced surface current component is that parallel to the axis of
the screen, and this fact accounts for somewhat different behavior of the field due to much
more pronounced effect of shadowing.

In the papers [14-19, 22, 23] one can find a vast amount of numerical results on the
H-wave scattering by finite number of open circular screens modelling various microwave
devices, and by infinite periodic grating of such screens.

4. SCATTERING BY SCREENS IN STRATIFIED
DIELECTRIC MEDIUM

This section deals with the problems of scattering of plane or guided waves from same
open screens as in previous section but placed in a stratified plane-parallel dielectric medium.
It is shown that these problems are also treatable with the RHP technique that is completed
with the Green’s function approach to take into account properly the material and geometric
parameters of the medium. As examples, H-scattering from screens near a plane boundary
between two dielectrics, near a plane impedance surface, and inside a parallel-plate dielec-
tric slab is analyzed, and both analytical and numerical results are presented. Perhaps,
among the most interesting are the problems simulating the guided modes scattering {rom
inhomogeneities. Similar problems on impedance-plane surface wave scattering from cir-
cular cylinders have been treated approximately by Davies and Leppington [37], and on
dielectric-slab modes scattering by Morita [38], Uzunoglu and Fikioris [39], and Kalinichev
et al. [40,41]. As for the scattering from a circular screen, the solution was first given by
Nosich for a screen near impedance plane [42], and later for arbitrary collection of screens in
stratified medium [43]. Some numerical results about plane and cylindrical wave diffraction
can be found in [44] and about slab modes scattering and conversion in [45].

4.1 On the Modified Condition of Radiation

The most general scattering geometry which is to be considered in this section is shown
in Fig.6. There is a material slab D, consisting of M, parallel layers characterized with
dielectric constants €;(j = 1,...M.), sandwiched between two halfspaces with dielectric
constants £+. All the scatteres, namely N open screens, are contained within a finite region.
Incident field is specified by some excitation field function H™(7). The boundary-value
problems associated with this geometry are not "classical” diffraction problems in open
domain in the sense that here some of the surfaces, at which the boundary conditions are
given, are not finite. It means Lhat although we need some condition of infinity (» — ©0)
to complete the formulation, the conventional Sommerfeld one is not necessary valid for
a lossless problem (Img; = O, Vj), as it was derived for compact scatterers with finite
boundaries. Thorough investigation of this question was carried out by Nosich [34] who
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Fig. 6. On the scattering from multiple screens in stratified dielectric medium.

showed that a more general condition ensures the uniqueness of the solution, and is stated
. .

172,
+ 2 ihyr —
H“(ﬂ —~ {@ ((P) (i?rkﬁr) e LT, 7 EDi
= 0, re D,

Q
gy, Z >0 iqhqlxi -
+2 {5 LZophee (57

where [H, =]V, (y)e** (¢ = 1,...,Q) are the natural guided (nondecaying) modes of the
sandwich-dielectric slab, propagating with real wavenumbers h;: mink; < h, < maxk;,
= .Lgl{“(j = —,+,1,...,M,), while parameters 7, = szgn(dhq/dk) = +1 correspond to
positive or negative group veioc:ty of modes.

~ To prove the uniqueness one must act similarly to the free-space scattering case (see
Section 3.1). However, to conform to the open-waveguide scattering geometry it is necessary
to integrate with weight €~!(y) and use domain D, of modified shape. This domain is now
bounded by the parts of a circle of radius r. up@er)and below the slab, and straight-line
sections (z = =%z.,|y| < y.) shown in Fig.6. When expanding D, to the whole plane, the
passing to the limit is made in such a manner that z.,y.,7. — oo but y./r. — 0. Then
integrating over the curved parts of JD. one can take account of only the cylindrical-wave
term of (87), while at the straight-line portions — only the guided-modes term. Exploiting
well-known orthogonality properties of guided modes in the cross-section, one obtains

g Prae)n, g
o / (1217 + 107 %) d + 3 70 (gl o+ 15,1) Py = 0 (88)
0 g=1
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where

Ay
k

1 |
g(—y*ij(y)dy (89)

A}

P, =

9--.\_‘8

8

and all the far-field quantities characterize the difference between two solutions Hy — Ha.
For the choice of 74, as given above, this relation turns valid if and only if ®*(p) = 0 and
ag=P8,=0 for all ¢ =1,...,Q, thus leading to the conclusion that H; = Ha.

So, one can see that the Principle of Radiation, which is stated as the one eliminating
any sources at infinity, is formulated here as the demand eliminating any wave that carries
power from infinity. However, provided that any constant ¢; > 1, it can be shown that
all 4, = 1 (there are no backward modes), and.one can set the demand eliminating any-
ingoing waves in terms of phase velocity. Besides, note that the first term in (87) satisfies
the conventional 2 — D Sommerfeld condition, thus the whole solution can be extracted by
this one provided that natural guided modes do not exist, e.g. in the event that Ime; > 0,.
for some j-th layer.

It is necessary to add that there is an alternative principle of extracting the unique
solution of a lossless problem in unbounded domain, namely, the Principle of Limiting Ab-
sorption. That is, the solution is taken as

H(7 k) = EliTuﬁ(ﬁ k + ik) (90)

where H (7, k+ ik) vanishes at infinity and is the solution of a lossy problem, i.e. the prob-
lem with losses assumed in the outer media. Unfortunately, there are no general theorems
ensuring universal validity of this principle. Existence of a limit like (90) has to be proved
independently for different classes of boundary-value problems. As for regular open waveg-
uides, it has been shown in [34] that this principle is really valid here and extracts exactly
the same solution as the modified condition of radiation (87). Besides, it turns out that the
limit like (90) can be used if the losses are assumed inside some of the dielectric layers, say
€5 = € +1&j. Then for H (7 ¢;) one must take the solution of a lossy problem governed
by the Sommerfeld condition of radiation like (35), as a lossy dielectric slab cannot support
any nondecaying guided mode.

To conclude this remark about field behaviour at infinity, it is worth to point out that
the quantities ®* () and @y, By (¢=1,...,Q) are the scattering pattern and mode excita-
tion coefficients, respectively. These parameters as functions of frequency and geometry of
scatterers are sought usually for practical analysis.

4.2 Screen Near a Plane Dielectric Interface

Consider the diffraction of an H-polarized plane wave by a perfectly conducting in-
finitely thin open circular screen near the infinite plane interface between two Lalfspaces of
different dielectric properties, as shown in Fig.7. The upper and lower media are denoted as
Di=(y>0,y<0)and dielectric permittivity is characterized by a piece-constant function
g(fy=1for 7€ Dy and g(7) = ¢ for 7€ D-.

Open screen with arbitrary parameters a, 0 4o is located at the distance b above the
interface, not intersecting it. Let the structure be excited by the plane H-wave incident at
the angle B(0 < 8 < ) with respect to the interface. For the sake of convenience, take the
initial field as the one in the absence of the screen, that is

eikxcoaﬁ [e—ikysinﬂ + f’(ﬁ)eiky sinﬁ] , y > 0

Hin Pl = iL.1/3 i &
() { §(B)eike (@ cosysin), y<0 &
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Fig. 7. Scattering geometry for a screen above plane dielectric interface. Plane wave is incident.

Here complex quantities #(8) and f(ﬁ) are the reflection and transmission coefficients which
can be easily found from the continuity conditions

in 16 in
[H* =t [E@H ]:0, =0 (92)

where square brackets are for the jumps of corresponding functions, with the result

7(B) = (sin g — e~ /?siny)A~1(g) (93)
1{(B) = 2sin BA~Y(B) (94)
A(B) =sinf+ e ?siny - b (95)

" Besides, the angle of incidence # and that of refraction v are coupled by the Snell’s Law —

cosf=e"Y?cosy (96)

It is known that the eqllla.tions (93)-(95) describe as well the plane wave incidence at
the boundary between two dielectrics with arbitrary permittivities ;. and e_. In this event
the quantity £ must be understood as the value of contrast : ¢ =¢_/ey.

If we define the total field in the presence of the screen as before

H(F) = H™(F) + H**() (97)

theu. th!'? scatter‘ed field H*°(¥) satisfies the problem similar to (32)-(34) but subject to the
continuity conditions like (92) at the interface, that is

[53 + k2%e(7)] H*“(7) = 0, e R\(M,y = 0) (98)
a—(ﬂ‘" + H*) =0, reM (99)
/ (K*e|H**|* + [VH**|*) dF < 00, YB C R’ (100)
B

el 19 se
(] =0, [E@H ]:0, L - (101)
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Besides, to have a closed formulation we need to introduce the adequate condition at
infinity. Assuming that there are no losses (i.e. Imey = 0 ), we come to an expression
similar to (87). However, in this particular simplest case of a dielectric stratified medium
it happens that the interface cannot support any guided wave. Indeed, if we assume that
there is a guided H-polarized wave propagaing with the wavenumber h along z-axis, and its
field is given by :
HE(F) = AeFiosvtihs  Fe Dy (102)
where gy = (k* — B g (k% — h*)!/2, then from the continuity conditions (101), we
obtain the characteristic equation of the boundary as a waveguiding surface

A(R) = g4 + %gi = (k2 — B2 + %(k'-’s'— B2 =0 (103)

To have no attenuation, h must be real and both transverse wavenumbers g, and g_ are
to be purely imaginary with positive imaginary parts, but as for dielectrics ¢ > 0, equation
(103) demands that these values must be opposite. So, if ¢ >0 characteristic equation has
1o such real roots that k < |k| < kel/2. Thus, one concludes that in a general expression
(87) the second term vanishes, and the field at infinity has to behave like

2

1/2 :
) ek Fe Dy. (104)

sc ==

B ()~ ¥4(p) (m}_,.
Let us seek the solution of the problem (98)—(101), (104) as a generalized double-layer

potential, formally coinciding with (38) where now we should use not Go(7,77) but G(F, ),

being the Green’s function of 2-D space divided to two halfspaces Dx by a plane boundary

at y = 0. G(#,7) has to satisfy the problem very similar to given above but without the

conditions (99), (100) associated with the screen, and with a Dirac delta-fuiiction in the

_ right hand part of (98).

From the most general point of view this function can be presented as the sum of
singular and regular parts (assume that ' € Dy):

Go(F,7) + G557, r), T€D
G(F ) = )b G ) ¥ (105)
G*o(7, "), Te D_

and the regular part can be treated as a Fourier-type integral

sef= 1\ — _E_ l_ T‘(h),D.{. :i:igiy+ig+y'+ih(.v—1:') 1
Gi (1,7 )-_ 47 / g-[-{t(h),D_ € dh (}.06)

with the coefficients at Fourier transforms given by

r(h) = (94 — et )AT(h), (107)
t(h) = 29427 1(D), (108)

where A(h) is defined by (103), so one can see that r(kcos B) = 7(B), t(kcosB) = 1B,
A(kcosB) = kA(B). The integration path C here is composed of semicircles centered at
the singularities of the integrand and remaining portions of the real h-axis as it is shown in
Fig.8. In all there are four branch-points h = £k, h = +ke'/? | so the proper sheet ol the
corresponding Riemann surface is extracted by conditions Regy > 0, Imyx 2 0.
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Fig. 8. Complex h-plane with branch points and initial integration path C.

Enforcing the boundary condition (99) on the screen’s surface M, we derive an equation
similar to (40). To reduce it to the dual series problem, we expand all the functions in terms
of Fourier exponential series in the local coordinates of the screen 7, = (., ¢.) = (z,y — b).
That is, we use the series (41) for the current density function p(7.) and the series like
(46) for the incident field (91) that yields the following expansion coefficients for the normal
derivative at M

b, = ZHJ;(/‘CO‘.) [e—ikbsinﬁ-l-inﬁ + ;:(ﬂ)el'kbsin,ﬁ—inﬁ] (109)

As for the Green’s function, discretizing Go(7, 1:') we use (43), and similarly
G o i . .
Gic(rti re) = Z ZZ J’—n.(k+r:)JP(‘kiTCJpr(kba E)E’ptpc_m(pc - (110)
(n) (»)

where we introduce functions

sn+p i2g4.
& Wi ot 1 [ r(h)et?+ in i
0 (kbi6) = T ./ﬁ’+ {t(h)ei(w—y-)b eV HEY-dl; (A1)
o

and define 14 (h) by expressions
costpy = h/ky, singy = —gifby =—(1-A2/k1)Y2, by =k ko =keV? (112)
Substituting these series into (40), we can integrate it term-by-term taking account of the

orthogonality of exponents and make term-by-term differentiation assuming that this is
possible. After setting . = a we obtain the dual series equations

> tn | i (ka) HSY (ka)e™ %= + 7 (ka) S Tt (ka)Qi (kb,£)eine

np
(n) (r)
== bne™, p. €M (113a)
(n)
ane‘"“““ =10, p. €S (113b)
(n)
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with additional requirement similar to ‘(47) due to the edge condition (100).
To use the RHP procedure, we extract the large-n behaviour term from the left hand
part of (113a) by introducing the same functions A, (ka) as before (see (49)). Applying the

results of Section 2.3 , we come to the system of algebraic equations

Hm = Z (Amn + Ana) o +Cmy M= I - (114)
(n)

where A, are given by (52) and

AL = in(ka) T (ka) 3 Tp (ka) @k, (kb,€) Ty (8, 0) g
(»)
Cm = f‘ﬂ’(ka)z Z bn’ﬁnn(gr ‘PU) (116)
(n)

with by given by (109) and Tmn(8, @0) given by (54).
In operator form equations (114) can be rewritten as

(7LaLaddyp= GG

As we already know, the operator A is compact in 5, and operator A! can be shown of the
same type provided that the screen does not intersect the interface. So, for any C € [2 we
conclude about the existence and uniqueness of the solution and also about the possibility
of its approximation through truncation. A procedure similar to that from Section 3.3
enables one to check that the function p(r!) calculated on the basis of (114) satisfies the
edge condition and is smooth enough to ensure the validity of operations preceding (114).

A note should be made that in the event that the screen is located under the interface,
we can obtain the equations similar to (114) with the quantities k., Qr,(kb,e) replaced with
k_,ﬂ:p(k_b,s) and free-term coefficients taken as b, = i(p)i" J,‘l(k_a)e"“”"'“"t’s"“*.

The far-field scattering pattern is now calculated through a more difficult procedure
than in free-space case. Interchanging the order of integration along contour M in (38) and
that in the Fourier representation of the Green’s function (106) in Dy yields

ai [ et
H* () =—

/“(ch)a_ar [c-ihri+iy+lyc-yé1 + ,.(h)e-ihr’c+ig+(vc+ui+ﬂb)l dridh
i ie (118)

Now H?*¢(¥) can be evaluated at r — oo following the asymptotic integration. Out of
the region defined by the inequalities [kz| >> 1, |kz| >> k2 (y + 2b)* we can exploit the
saddle-point technique (see [46] for details) that yields

1 a : e i
q>+(tp ): __]# T-:I — [c:k(ydsmgac—:ruccmtpc} "
¢ 4 ( C)anﬁ
M
+]-:(!pc)e£2kb sin tp._.,e—:'k(y; sin po+x’. cos tpc)] d].z ( llg)
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(116) /_\
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1 2 ka
(117 Fig. 9. Frequency dependence of normalized total scattering cross-sections for open screens of
vid &F tid various widths over dielectric halfspace.
;e Ly we
ossibility . ) B, T gt A 2
tioin 3.3 Discretizing this expression in terms of u, coefficients for a circular screen, we have
isfies the ) o sin i
) ) ; enup +1‘; e‘l..' Slnlp—‘lﬂ‘p’ D
5 (114 ¥() = 3 (- a ko) S W S
interface, o sinp(1l/e — cos? p) t(p)eine, D_
wed with -
T
edeathiis Integrating the squared absolute values of the functions ®*(p) with respect to ¢, one
(38) and can calculate the fractures of the TSC associated with the radiation to upper and lower
halfspaces.
In Fig.9 the plots of TSC of a circular open screen are shown as functions of the
dimensionless frequency parameter ka. Similarly to the free-space scattering (Section 3.4),
one can see the resonant behaviour of the screen provided that the latter forms a sort
of cavity. The first low-lrequency peak of TSC is again due to the Helmholtz mode of a
! cavity-backed aperture. The other peaks are associated with higher-order natural damped
k N H-modes of the same slitted cavity. New feature is that the scattered power can be enhanced
(118) due to phase-matching between the field reradiated from the screen itself and from its image
located at the spacing 2b down the inreface.
n. Qut of

: |
Figs.10 and 11 show the normalized far field scattering patterns ®*(y) of the screens
with different angular widths placed over the dielectrics of diflerent contrasts. First of all,
there is no scattering along the interface ®*(p) — 0 as ¢ — 0,n. Besides, there are two
simmnetrically directed sidelobes of the patterns clearly observable in the optically denser

medium D_. Their direction is conditioned by the angle of the total internal reflection
(TIR)

«ploit the

(119) v, = arccos(e~1/?) (121)
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Fig. 10. Far-field scattering patterns for a semicircular screen Over dielectric halfspace with vari-

ous permittivities.

40° 20°

Fig. 11. Far-field scattering patterns for circularly curved strips of various widths over dielectric

halfspace.
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So, the higher the contrast, the closer TIR-lobes to the normal direction independently
on the angle of incidence B, and hence, the narrower the whole pattern ®~ (). These TIR-
lobes are present for any scatterer either elevated over or buried in the dielectric halfspace.
In general, they are more in amplitude for larger contrasts and larger dimensions of the

scattering object.

4.3 ITmpedance-Plane Surface Wave Scattering from a Screen-Shaped

Inhomogeneity

In this section we consider another example of H-wave scattering from a screen placed
in a simple stratified medium. Unlike the previous section, this one deals with an impedance
plane boundary which can support a guided undecaying natural mode of surface character.
This fact leads to the modification of the radiation condition and results in appearing the
transmission and reflection coefficients of the incident mode as quantities being sought.

The scattering geometry is presented in Fig.12. Here ascreen M of the saine parameters’
as before is located at the distance b over a plane boundary with impedance Z. Assume
that the incident field is H-polarized, then the total field is of the same polarization due to
the 2 — D character of the problem, that is defining H = H™ 4+ H*® as before, we have

(A + k3 H*e(7) =0, 7€ D\M (122)
ad in sc —

6_n(H + H*) =0, TeM (123)
Je e+ wEeRar <o, ¥BeED, (124)
J C e

plus the boundary condition that is to be satisfied at the plane y = 0

9 in ae .
(-554-&) (H""+ H*?) =0, a=iwZ. (125)

. To make a correct statement we need first to analyze the eigenvalue problem for natural
guided modes supported by the boundary. Seeking the nontrivial solutions of corresponding
eigenvalue problem we obtain the dispersive equation

ig+a=0. (126)
h
D+ / ‘P0+9
/
M 7
/a Po
/ — -
_ o B
Hin \\ ’
-8
1 R =%, 8 T
Wﬁwﬁr’m‘h‘ﬁ%ﬁ‘x

Fig. 12. Scattering geometry for a screen over impedance plane. Surface natural mode is incident.
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Prov icted  that o (1 real, 1l

single real positive solution is
ho = (k* + o*)!/? (127)
and yields the following surface mode guided by impedance plane
Ho(7) = Ae—avHihor, (128)

Further we assume that it is this mode that is incident, so Hi" = Hy with A =1. Then the
needed condition at infinity takes the form

L R T—1, 2>0] ogti
sc ~ & ikr ) —ay+iholz| c
H*(7) r—rc0 () (iwkr) oy { R, z<0 }e < GL2)
where 0 < ¢ < m, and the quantities T, R and (i) are to be found in our analysis.

To this end, using a double-layer-potential representation for the scattered field, one
can derive an equation similar to (40) with the kernel defined by the Green’s function of the
halfplane D4 bounded by impedance boundary “

G(7, 1) = Go(F, 1) + G**(F, )
=Gy(F, Ff)+4‘—7r / L (hyeistute Hinz==) . (130)

g
c

where the function )
ig— o«

g+«

r(h) = (131)
is now for the impedance plane reflection coefficient of a generalized plane wave incident at
a complex angle ¥: cosy = h/k,siny = —g/k.

Then the derivation of the dual series equations and their regularization by means of
the RHP technique retraces the steps discussed in the previous section. The resulting matrix
equation is similar to (114). A, are again given exactly by (52), however for Al and Gy
we obtain (115), (116) where now we should take

P11 — .
Qnp(kd,a) = /—1'()‘1)6""'"""’("+”)"”dh (132)
& g
and ,
b, = e~ J! (ka)e'™¥° (133)

where ¥g:cos g = ho/k,sintho = —go/k = —tafk.

As before, the resulting system of linear algebraic equations for {1tn )22 oo s Of the
Fredholm second kind. It is equivalent to the initial boundary-value problem and, due to
the uniqueness, its solution exists and can be approximated through proper truncation for
any set of parameters.

Besides, there is another, somewhat different way of numerical solution. If the screen
is distanced enough from the plane, the result can be obtained by iterations, in the form of

operator series
o

,u:(I—A)“IZ[AI(I—A)“]“C (134)

n=0




(127)

(128)
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3.
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This procedure is equivalent to taking account of the successive reflections from the
interface of the field scattered by a single screen. As the operator of the free-space scatterin
s invertible (see Section 3.2), (I — A)™! exists and is bounded. Besides, it does not de eng
on & while the functions Qnp (b, @) = 0(b™"?) as b — oo, s0 it can be si1own that the speries
(134) converges for large enough b. ‘ l

To study the field far from the obstacle, we need to calculate the Fourier transform simi-
lar to (118). Unlike the previous section, here we have not only the bré,nch-point singularities
on the contour of integration at A = £k but also poles of the integrand at A = +hq. The
far-field scattering pattern can be estimated at k7sin¢e >> 1 by the saddle-point tec?{ni ue
similar to that employed in the previous section, and the result is ’

(D((,D) — Eun(__z)n.];(ka) [eiﬂgp it ’«;((P)eiﬂ:bsinw—iﬂlp] (135)
() ' ' : '

where ;
o s a=iksing

== i(p) =

. As can be easily seen, for ¢ — 0,7 we have ®( ; o
’ @) — 0, thus along the bound

the surface wave Ho(7) that solely carries the power. A ety 1
To obtain the amplitudes of the guided mode at z — oo along the interface, one

has to take account of the residues taken at the poles h = £hy. Assume, e.g., that a,: <0

and introduce new variable s such that th = —s 4 4. Then _ N D7
? = . a new integral r

obtained gral repsentation 1s

o+ tksing (136)

H®(F) = qe'k= / F(y,s)e™*ds (137)
Gl

with the integ_ra.tion path C" being the image of the real h-axis in the s-plane (see I'ig.13

Taking the branch cuts from s = 2ik to the left and from s = 0 to the right in arallgl;;el t)-

the real axis, and deforming the contour by shifting it to the right, we can mduci (146) to

the sum of the residue at & = kg and branch-cut integral along the ,Ioop C". Thus, we havz
* '

307 ~ - —ay+ihgr
H(7) _~ (T = 1)eer+ihor o () (138)
Ime
s +2ik |
s (DA~ L
Cl‘
e O
g

Fig. 13. Complex s-plane and contours of integration for asymptotic evaluation of the far field.
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w;here . 8
T-1=e2 f W) e o=t (139)
M ¢

In the event that < 0, we should shift the path C' to the left (Fig.13) and acting by
analogy, we find ;

R iengpealimBtistifsiia D (140)
where : P f
il T8 o ihozh—oyl 1.7 !
R=e E]#(Té)ﬂe ay dT"c 5 (141)
M

TFor a circular open screen, as we have, the discretization in terms of yn coefficients
reduces the integration to summation with the result as

T-1 4o _ . S By . 60\
ol i o (Fi) T (ka) [~ & — ; 141
( B ) f}pe > 1 E:Fz) Jp(ka) Tt o (142)

As for the additional terms Hff-ﬂ,(ﬂ, we can expand the integrands in terms of asymptotic
power series of s. First-term integration yields that Hi% = O({:L'|“1)e““|”| as |z| — co. This
fraction of the scattered field propagates with the free-space wavenumber k (unlike the
surface-wave fraction) and is usually referred to as a lateral wave [46].

As it has been demonstrated in Section 3.5, linear algebraic equations obtained for the
current density function coefficients are suitable for low-frequency asymptotic solutions. For
the surface wave scattering, expanding all the quantities in terms of the power series of
x = ka, we arrive at asymptotic expressions uniform with respect to # and ¢q

N—-—-————iﬂuze—ab {n’ (gsin +ih—0cos )l+u
T D(RIQ:'PD) k el k - Too

20 aho 1—2u—3u®
-k |(1 Yop — 21— sin 2 = 43
K [( — 2 ) cos 2po — 215 sin (PQ} o, } (143)
27 1 a9 —ab ( irerf —iparF
41 R [lok Te10 — -Q—Tl'hl e (8 Ty + ¢ T:l:lél) (144)

1 o ITR T ] j:'
D(k,0,p0) = =— — K~ 1+ Z5 1k [ 14 Qoo + Qoo 22 ) 200, =
Too 4 Too Too (145)

Taking account of (142) and (144), these expressions yield the following low-frequency
asymptotics for the far-field characteristics

T-1 200 _ - qwk? ot [ 1 _
( R ) =< —Ee a4 [h:,(l,g - F T(l + e b(F‘-J)} (146)

where

h
Fi =1-=r(l+u) (%simpo + i%cosgo())

o,
142

- !
Fy=1+(1—u) [(1 + -2’%-) cos 2pp + ‘2:'-(1—;0- sin 2(,:7;)]

I

+ (1 — u) cos 2p0




(139)

acting by

(140)

(141)

oefficients

(142)

symptotic
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unlike the
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1 series of

(143)

(144)
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and
1 i
D(p) 2 — FHo -+ —Ktzfl + u) [Fycosp + Fssing
+7(p)e 2“5‘“"”(1“4 cosp — Fssmcp)] (147)

where
T h h :
Fy = pocosypo + 7% A [ ko +(1-u) (—;fl cos 2y + i%siu&po)] '

- Y2 e ho. .
Fy = i sin o + Z¢ ab [1E +(1 = u) (-&—0 sin 29 + i% cos 2(,90)]

It is interesting to note that these formulas describe properly an electromagnetic ana-
logue of so-called Dean’s effect discovered initially in the dynamics of incompressible fluid
[47, 37] : there is no reflection of a surface wave from a small submerged circular cylinder.
Indeed 1f we set # = 0 in the above formulas, we find that

T-1 ~i7r —9ab 4dola 2

( R )N ho ¢ —3r:2 (148)
(I)((,D) b _Z:hQ —ctb {[l +7(‘p)e:21.bsmtp] (1 _2%_ cosq:)

i [1—7(p)eioine] 2E sin (149)

and for £ = ka — 0 while aa = const we obtain R — 0 with nonzero T — 1.

In the event that 8 # 0 but@is not large, the surface wave is scattered from a circular-
cavity-backed slit aperture. Such a cavity, as it was shown in Section 3.5, has a special
low-frequency natural damped mode of oscillation Hgg referred to as the Ielmholtz one.
Analizing the eigenvalue problem for the matrix [|[I— A(k) — A (k)| at & = ka < 1, we come
to the resonant frequency (73) perturbed by the presence of impedance plane

2 i . B i 1. 0
ko =~ a~*(=2Insin 5) ! [1+_8—7F(1+Qou)ln !sin 5} (150)

So, if § — 0 the Helmholtz mode frequency is located well within the low-frequency
region. For this resonance we find from (146), (147) that both reflection and radiation are
mucl more pronounced, namely

U ea AT g
T~1sRey e~ bmip, (151)
B(gp) = €700 Fg [1 4 7(p)? oot sine] (152)
where
Fs = [1 — 2(agoasin gy — ihga cos pg)](1 + ReQp) ™! (153)

Besides, an estimate similar to (81) justifies the solution by iterations for finite ka and
0 = m—8 — 0ie. for a narrow strip. Expanding functions Tp,,(— cos@) in terms of
asymptotic series of §, we obtain

D 1) dire . , 6 - g
s 2 7 =2a(b—asingg) v [,
( R =y, gE (Fg) (154)
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where
= (@0)2 + 12 cos? o
Fs = [(xa)? cos 20 + k? cos? g — 2iathga cos o) o~ 2ihod®
and ‘
D(p) = —wksin? %(aasin o — thoacos ¢0)e—ihnacospu_a(5_asin%)
[cos(go _ ipg)et* o5l %0)  F(p) cos(ip + wo)e'™ cos(p+wo)+2ikbsin o (155)

These formulas agree with low-frequency asymptotics obtained above.

4.4 Mode Conversion and Scattering due to Screens in Dielectric-Slab
Waveguide

Inhomogeneous dielectric-slab waveguides are known as basic elements of optical and
microwave integrated circuits and antennas. Because of the open nature of the waveguide,
the scattering of natural modes from an inhomogeneity is always accompanied not only
by mode conversion but also by the radiation. The geometry of the problem analyzed in
this section is illustrated in Fig. 14. The open waveguide is formed by a plate-parallel
slab D, of thickness 2d and dielectric constant ¢ sandwiched between two free halfspaces
Dy = (y > d,y < —d). The slab is known to support the finite number of natural guided
modes of two types T'E; and T'M; denoted from the viewpoint of the field structure with
respect to the direction of propagation. Assume that T'M; mode is incident normally on
the inhomogeneous section of the slab housing cylindrical screen-shaped obstacles with their
axis at the same spacing b off the middle of the slab. Then it is obvious that here we have
a case of H-polarized scattering with respect to the axis of cylinders. Thus, the incident
field function can be found from the treatment of the corresponding eigenvalue problem that
yields . ik :

N7 e VSO N NIE = v;*(P;y), lyl < d } ihjz

()= e = {0, > 0 (120

where g; = (J'\:") - h?)”"’,pj = (k"’s - hf-)l”, (1) = cos(),v°(:) = sin(-) and the mode

wavenumber hj 1 k < hj < kel/? satisfies one of the dispersion equations for even T' M, or
odd T Man41 modes of the glab (n=0,1,2;.).

Fig. 14. Scattering geometry for a collection of screens inside a dielectric-slab waveguide. Natu-
ral guided mode is incident.
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A*(h) = ige cos pd + psinpd = 0, (157)
A°(h) = ige sinpd — pcos pd = 0, (158)

Decomposing the total field into the incident and the scattered field terms, we obtain for
the latter a boundary value problem

[A+R(F)] H(F) =0, 7eR\(M,y= +d) (159)
N
where g(7) = € for D¢ and 1 elsewere, M = U M,
s=1
e 19H*
(7] =0, [;W] =0 iy =ikd (160) .
9 in c -
Bn,(H +H*)=0 FeM, s=1....N (161)
/(kzsIH*CF +|VH ) dF <00, VB C R? (162)
B
i /2 ik
f{'c(r) ~ {(I’J ((p) (irrzkr) 4 e‘k Y>> d!y < —~d
: r—eo 0, lyl < d
Q
Ty =645, >0 :
g { 9 = Ogi }V ihjlz|
Z;. Rej, & <0 2(v)e (163)

Our aim is to find an effective analytical-numerical solution of this problem resulting
in calculation of the mode conversion coefficients Tj;, R, and far-field scattering pattern

(D;E(tp) with a guaranteed accuracy. Seek the scattered field as a sum of N generalized
double-layer potentials

N N
sCf=y scf = (= g ~ =
H*(F) = E H*(7) = f,u. (rs)én—G(r',:',)d’f’,. (164)
s=1 1 Fd

= M,

Here .;1’(1"') is the induced current density function for the s-th screen, G(i7, 7, ) is the Green’s
function of the slab which satisfies a problem similar to (159),(160),(163) but with a Dirac

delta-function in the right-hand part of (159). As all the obstacles are inside the slab, we
can set |y,| < d and derive that ,

S ooy _ 1 1 Aope = i
G(7,r,) = Z‘szHcg ) (k.el/ [7 — 1',]) + ‘—;;/I“J(y, ¥y, ket E=T ) gp (165)
c

\_\-rhere index j takes th(? values +, — or ¢ depending on the location of the observation point
7 € Dy or D, respectively. The Fourier transforms are found to be

Fy = ei9v=d) {(1 il ﬂ) givd [icoﬁpys cospd  sinpy, sin pd} efPld-v.)

. X0 Ao(h) P } (166)
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€9\ ;pq |COSPYs COSPY sin pys sin py ;
F=[1—"2)¢" 167
= ( 2) e R T ] en

=i ipd | s | sin pyssinpd eir(yatd) .
F_ = e i9lytd) { (1 - igl) eipd [WOSPy cospd + 168)
p Ae(h) Ao(h) P (

with ¢ = (* — h"))lfz, p = (k% - K22 Img > 0, Reg 2 0. Note that the Fourier
transforms have only two branch points at h = =*k and at least one pair of real poles
h = +hg at the contour of integration C. These poles correspond to the principal (even)
T M mode having no low-frequency cutoff with the wavenumber given by the lowest zero
of A®(h). Next real poles at h = +h; correspond to the first higher-order (odd) mode M,
and appear as the lowest zero of A%(h) provided that kd(e — 1)Y/? > /2, and so on.

To find the unknown functions 1* () subject to the boundary condition (161), derive
the set of N coupled integro-differential equations valid on curves M, (s=1,8.N) and
seek the solution satisfying (162). To reduce the problem to the dual series equations we
introduce angular Fourier-series expansions in local coordinates of each of the cylinders, e.g.

2 in
#’(#%)-‘—‘mz,u;e' LN (169)
(n)

with unknown coefficients g5, (n=0,%1,.. .), and also introduce similar expansions with
known coefficients for the Green’s function (165) and the incident field (156). Tracing term-
by-term operations of the previous sections we arrive at N systems of dual series equations

Z p:t Jrfts-H:ueimp‘ + Jf—n.s Z Jf'n,anmEirmp' =+ bfleimp'
(n) (m)

N
+ 2 F‘?z J:lqZ‘Hr(zl.zm(kslﬁLq.f)J:nqei(n_m)v“-}-imw'

9=1,#5 (m)
+J’—nq Z Qnt Z J!—m(keuqu:)J;wei(t—m)wq'+£”HP' = 0, Ps e i‘l'[,
) (m) (170a)
S e =0, 9, €S, (1701
(n) y

with J;, = Fribe'Pas)) HY, = Hr(‘l)‘(ks”'za,). Lys is the distance between the centers

ns

of ¢-th and s-th screens, @gs = oifg<sand wifg>s and

in+t -
Q,”(kd,kb,s)zzﬂ f(l— ?g)
C

ipd | cos(nip + pb) cos(ty + pb) sin(ny + pb) sin(ty + pb) | )
e [ X0) %+ Ao () dh (171)
b = " JL v (ny; +pjb)e"”"i£"‘ (172)

where the function 1(k) is defined as usually, through expressions cos h = h/ks”"',sin =
_p/ke'!?, while ¥; = P(h;j).
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+d)
__} (168)

at the Fourler
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n (161), derive
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(169)
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Py € ﬂ‘f_,
(170a)

(170b)

tween the centers

’.] dh (171)
(17'_).)

= h./ks”"’,sin h =
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Besides the dual series equations the coefficients must satisfy the set of conditions

312
E palfln+1] <o
(ﬂ)[ 1| | | ) § 1:---1N (173)

ensuring the field beliaviour in agreement with the edge condition
As we already know equations like (170) can b : ‘
b . e effectively regulari
the pa.rtlal inversion procedure based on the RHP technique. Ag be%‘i‘:“j;dt::f rr-leanc‘s of
analytlcal'ly corresponds to :small argument behaviour of the product ,]', oo ‘(“;;gvelifed
to the main term of the static part of the dual series operator. Resulting;lggr)raic equae;.)t,i;.e.
s

for unknown coeflicients W= {8 =1,...,N can be written as
I - -
A - s _ '
(I = Agy = Ay )n ZI; (Agg + A u = C° (174)
g=1,#s

where s = 1,..., N, and operator A, is for the single-screen-free-space scattering case, i.e
se, 1.e.

given by (52) with a = a, and ke'/? instead of k, while Al, is formally the same as (115)

. + A
with a,k,Qn_l_p(lf»b,E) replaced by a,, ke'/? and Qn,(kd, kb, ), respectively, and interaction

operators are

A., = ||lire(ka)?J! (1) (pell/? i(n— 7
sq = |lime(ka) nq(XP)IHn—p(ks O L (T | (175)
i 1 s . . 2 57 .
A-"l - HM’E(LG) J"q ZQ'" ZJ"'P(ksuz‘[‘?")Jl';qe‘(iﬂp)wq'fwmp(gs19905)”2 n=
© @ T (176)

The free terms in (174) are expressed through (172) according to (116) with similar substi

tutions.
' The operators A Al canbesl i
AggrAgg e shown to be compact in the functi i i
5 . : ional space |
that the screens do not intersect each other and the surfaces of the sl;b pTl]is 2guI;[;C;V1EJed
s -antees

. the convergence of approximate solutions obtained through truncation to the exact one witl
3, 1

increasing the matrix order. Moreover, thi i
i , this solution does belong to a narrower class governed
As for the far-field parameters 1
. ; , carrying out the derivations by analogy t i
:lszzt.lto::l, bwi 1'r1ustkt.ake1 E;cclt%lllt of finite number of real zeros of the ﬁmﬂ{ioﬁ 'XS(E;X;?;I‘;
ated between k and ke'/". Usi ic i i i : :
lo ng the asymptotic integration technique we finally arrive

(ij ; 6mj) = 2(9”16 — pm)efl’md T
z(iﬂ) Uc'o(pmb =l "-d}m)ﬂ’fn (:i:h.”,)

R—mj pmA’e,o(hn])
N ) (n) ) (177)
Tl ==z L= [(sa - 7) (COS’.’d Seon )
?,: 7 m 1A*(k cos )
sin dsin(n1) + b) I -
i e TN T e el ipbFi
iA°(k cos p) + T “‘1’] Mo (k cos ) (178)

1/2

where g = —ksi j =L kle ~cos®
q ing,p=—k(e—cos® )% 0 < < and the coellicients

N
Mn ) = s vy _ithlL,
(h) guan,e : (179)
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serve for the current induced on some ” effective” circular scatterer (made of N ones) as 1t
is seen from infinitely remote points inside and outside the slab.

The equations obtained are equally valid for arbitrary collection of screens, however we
present further some numerical results for the scattering from a periodic grating of identical
cylinders, ie. Lgs = Llg - s| where L is period of grating and a, = 6,85 = 8,05 = §0 for
alls=1,...,N.

Fig.15 shows the plots of the T M, mode transmission and reflection coefficients as
functions of the relative screen radius afd for a single-mode slab. Inside the slab there
is only one screen shaped as a rather narrow cavity-backed aperture. The sharp resonant
peaks observable at the plots detect the excitation of the familiar Helmholtz-type damped
resonance Hoo of the cavity. - If the slab can support two guided modes, the additional
resonances appear, as Tig.16 demonstrates. Their origination is explained by the higher-
order damped resonances of the cavity which are splitted to two symmetrical families Hon
(see Gection 3.4). Note that for a symmetrically positioned screen (b= 0,00 = 0 or w) these
families can be excited separately by even and odd incident modes, that is not available
under the free-space scattering by a screein.

Fig.17 gives the example of the dependence of the coeflicients of mode conversion or
the slot position angle @o. Here, there is a single semicircular screen placed into a three-
mode slab, and principal T M, mode is incident. One can easily see that the plot of the
transmission coefficient Too(wo) 18 symmetrical with respect to the point @o = 7/2. In other
words, the incident mode transmission is exactly the same for two mirror-opposite obstacles
but this is not true for other coefficients. (e

To explain this behaviour one needs to investigate the reciprocity relationship for open
waveguide scattering. To this end, assume « guided natural mode of index either p or —¢
to be incident from & = —00 or z = oo with the wavenumbers b, >0 and h_y = —hy <0,
respectively, and denote the total fields by the sums

H®) = H,+ HES, g = H_ g+ HO* (180)

Then, apply the Green’s formula (36) but with weight e (y) to functions ) and
H(=) within the bounded domain D. indicated in Fig.6. As both functions satisly the
modified condition of radiation (87), the final result of integration over D, — oo contains
only the field products of the incident mode and the mirror-mode terms, that is

0.5 a/d

Fig. 15. Amplitudes of reflection and transmission coefficients as functions of relative radius of 2
cavity-shaped screen in a single-mode slab.
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30° 90° 150° {?0

Fig. 17. Effect of screen’s angular position angle ¢ o on the amplitudes of mode conversion coef-
ficients. TMg mode of three-mode slab is incident.
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Fig. 18. Far-field patterns due to the scattering of TM mode of a single-mode slab from single
and grating-like screen obstacles. Cavity's parameters in bottom geometries correspond to Hyg
resonance.

2 — Ar2(—
AT e N (181)
where
h T h; (1 sin2p;d  i[v*0(p;d)]?
N?:'—J/‘W?d:—’ S s i 182
S dodiond D g L el = (4623
—co

is the norm of the j-th guided mode.
Now it is obvious that for ¢ = p we obtain simply

T = T4 (183)

Naturally, this fact is a counterpart of the well-known free-space identity of the forward-
scattering amplitudes in the plane wave scattering (see Section 3.4 and (77)). Hence, intro-
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ducing the scatterer positioning angle «, we have
Typ(e) = Tpp(—0) | (184)

which is exactly the result demonstrated in Fig.17, as here @ = T/2 — @o-

Similarly, one can derive the energy conservation equation analogous to the free-space
one (76) but modified for open waveguide geometry. To obtain it, one has to apply the
Green’s formula with weight again, now to the field H = Hp+H’¢ and its complex conjugate
in the same domain D, — o0 with the result as follows:

. Q b

2 P 2 o 5

Ny = Z;Nf(mpl“ + IRy + =17 / (82 + 1@ 2)dep (185)
a 0

The terms in the right-hand side of this equation give the fractions of the incident power:
which are transmitted and reflected as guided modes and lost as a cylindrical wave, respec-
tively.

Finally, the far-field scattering patterns are presented in Fig.18 for the single screen
and grating scattering geometries. One can see that it is possible to enhance the directivity
of radiation considerably by collecting a rather small number of scatterers into a periodic
grating. Note that the total aperture of the array fed by the slab waveguide is about two
free-space wavelengths. More numerical results on guided modes conversion and radiation
due to single and multiple-screen obstacles in single-mode and multimode slab can be found

in the paper [48].
5. SCATTERING BY SCREENS NEAR INFINITE PERIODIC GRATING

i In this section we present the analytical—numerical method of solution for waves scat-
terai/by the scatterers combined of open circular screens and infinite periodic gratings. The
general approach to solving such problems has much in common with the previous section.
Again, the modified condition of radiation is needed for a correct statement, and when using
the RHP technique we exploit the fact that the Green’s functions of various gratings arce
available at least numerically. We give the general solution for a finite collection of screens
near a periodically arranged grating of arbitrary shaped elements. Then we illustrate this
analysis by presenting numerical results for H-diffraction by an open 9 — D resonalor fored
by a screen and a plate grating of plane strips. )

The Green’s function of the latter has been examined by Skurlov [49] who reduced it to
the linear algebraic equations in Fourier transform domain. The full combined problem was
first treated by Nosich (50] who gave the formal solution. Some numerical results on plane
and cylindrical wave scattering by screen over a short-periodic strip grating can be found
in [43,51]. This analysis takes account of the grating approximately, within the framework
of the Lamb’s rule description of the Fourier transformed Green’s function, but it can be
deepened by using a full-wave numerical algorithm.

5.1 Formulation of the Problem and Derivation of Basic Equations
Consider the 2 — D space R? contalning an infinite periodic (of period L) diffractiol

grating located completely within a strip Dy = (-2 & ¥ < 0} referred Lo as a gratin
domain (see Fig.19). Let the upper and lower free-halfspaces Dy contain Nyg perfectl
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BB

Fig. 19. On the scattering from a collection of screens near an infinite periodic grating.

conducting circular screens My, (s = 1,...,Nj, j = =) of the same geometry as in the
previous sections characterized by the set of parameters (aj,,%’,f?j,,x?“y?s)_
The screens are assumed not to intersect each other or the boundaries of the grating

domain. From the viewpoint of mathematics the problem of external excitation by some
H-polarized field H*" = H — H’® is forinulated as follows

(A+EHH*(F) =0 (186)
N
where # € R\(MUD,), M= |J M, N=Ny+N_, Imk=0,
j=£,8=1
B, Hec(7)=0, €D, (187)
grebu P
S(H"+H) =0,  FEMy,s=1,...,Ny (188)
3
/ (K| H| + |AH*[?) dF < 00, VB C R*\D, (189)
B
OE () (-—2——)% e’**, 7€ Dy 9 (e >0 i
H"C(T_") 3, { imkr ! B } e { g }Vq(y)et‘?qhdﬂ
r—co 0, (S Dg =1 ﬂq, z <0 (190)

Here the operator D, contains a set of boundary and edge conditions on the contours of
grating elements. The condition at infinity (190) takes account of the grating’s natural
guided modes Vg(y)e"’h‘II provided that they exist.

The general scheme of the treatment is similar to that given before. We start with
seeking the scattered field as an assembly of the double-layer potentials like (164). The
kernel function of such a representation is the normal derivative of the Green’s function of
the grating. So the initial problem is splitted into two ones: the search for the Green’s
function and the search for the currents on the screens. The Green’s function satisfies

SN
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the given above problem without the equations (188), (189) and with delta-function in the
right-hand part of (186). It can be presented as follows

G(7,7") = 6;:Go(F,7") + G} 7 (191)
where Gj is the free-space counterpart, ¥ € D;,7' € Dy, jt==%and
vepe Py |
ij("s”") . Zﬂ;]ﬂ‘:(f,r',h)e W= dh (192)
C

being the Fourier-type integral representation. If the natural modes spectrum of the grating
is not empty, then the integrand in (192) has real poles on C', and the whole integral should
be considered in a generalized sense.

Due to the linear character of (192) the function Fj¢(#,7', k) can be treated as a grating
response under the incidence of generalized plane wave

a0 - { 81 AN hye~toll+ihe e D;

U = 1
Jt 0’ ‘FED; ( 93)

propagating from the halfspace 'Dj at the angle ¥: cos¢ = h/k, siny = —g/k with the
amplitude
A7 k) = ie-fyly'l-"’w'. (194)

As a result, the function Fj,(7,7',h) satisfying the Helmholtz equation and conditions
imposed in the grating domain D, is obviously a periodic function of z with the period of L.
Hence, off the domain Dy it can be expanded in terms of Floquet-Fourier series as follows

Fju(7, 7' Ry = A9 {aj?(h)’ " s Df}e‘—i““g«(lv—l’lﬂ) (195)
o by(h), T€ED

where 7' € J_Dj,.r: = L/xgy = (k2 - hg)ln,hq = h + ¢k/x, Regy > 0,Img, > 0, and

coefficients a}, b}, are the amplitudes of the field space harmonics produced by the plane

wave like (193) but with a unit intensity. -

The problem of seeking these amplitudes is an independent one, and the results are
readily available with guaranteed accuracy for a wide amount of particular gratings (e.g.,
those of rectangular or circular bars, plane or inclined flat strips, nonclosed circular cylinders,
etc.). As the expansion (195) gives the Fourier transform dependent on the coordinates z,y
in explicit form, the [urther derivation can be made in a way similar to that of the Section
4.4, By expanding the surface current densities p*(7;s) and the integrand in the Green’s
function (192) in terms of angular exponents in the local coordinates of s-th cylinder in j-th
halfspace, we arrive at the representation

Nj
HE(F) = 3 3 2 282 (0, i)

s=1 (ﬂ)

Nj
o+ Z Z ‘u{;’ " J:J(ka.f! )S(J:)n (Fj-’ )

1=1 (n)

Ny
+Z Z,uffi"J,'l(ka;,)S(‘;)n('ﬂ,) (196)

1=1 (n)
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where
. i Tk HSY (by), ooy (107
ZP @0 = 1 gPE) kY, oy )
7 i eimﬁ i ) =
; B al, b} ei9ally—p—y0, |4p) ihg(c—27:) dh. 198
Stapy(Fie) 4;:! g %{ vl Visl+P)gihals %5 (198)

Now we have to transform .this field to corresponding coordinates of a screen Mj,
and enforce the boundary condition ( 1.88). This yields a system of N coupled dual series
€quations similar 7|-O--(170). Each particular du::.xl Series equation can be subjected to the
RHP-based S arkial inversion procedure (see Section 2.3) resulting in a system of N coupled
matrix.(l)pera,tor equations

o i g y N,
(1 - Ai, — AL W’ = : Z; (Ai, o+ Ai:l) W=t = o (199)
=1,#s 1=1

where s':i"lig;'f_‘lN;i'j,t =+,j#1t
ALy = (AT T G 26N = oo

‘5:":-_75\_‘;_-’--'."";1‘: it (1) A ¥ t(n— J o~ is
A‘:l = "fﬂ'(kdjs):!-]:;(kah)zHP—H(A‘RM)E (n P)‘%’,;Tmp(gj“% )!Ino?,rt=—0°
ML (»)
b SN 1130 U] . jsi ' s :
oty Al [l (ka2 (k) D Ty (ke )2 Tonp 030,087 112 oo
= resdne R s ST (»)
{441 Il isy1100
AR = liw(kajs) ) (kau) (Z: To (ka5 )Qypn Tonp (054, b M=o
; )
e Lot V2 Rl ffr (g js)co
CJ. 5 {17("'01-') b"( aJ") miL4er P m=-—oa
and '.;'.ﬂ;;:-ln‘}!"):‘ a7 1 i H
e igh+iny
b e iR Y R A
the s?i:‘-h)'?un T 4w ./ g Z {aq,b{]}
._;A.'E;zz.’i'w esrdiogs © N
b F:TSI;;;-E!:;-?:—'JE!' “ExTp {39‘11 [(y:?f - y;?s) :I:p + p] + iTn‘d)? -t ihq(.’a‘:?r - CL’_?_, } dh. (200)

! E!t‘aquﬁ aW BsE wild up j j 5 &
Here we have denoted through (R}, 77;) the coordinates of the Mji-th screen center in the

local coordinates of Mj,-th screen.

. As before, the coeflicients y’ are governed by the demand of convergence of the series
analogous to (173). Investigation of the obtained matrix equations shows that the solution of
- exactly the needed type exists, is unique, and can be approximated by means of truncation.
All this provided that the screens do not intersect each other or the grating domain. However,
the latter restriction is not absolute and it needs a more careful treatment to be overcome.

¥

5.2 Diffraction by a Screen near a Plane Strip Grating

;"}_ The geometry of this particular scattering problem is illustrated in Fig.20. A screen M
is located at the distance b over an infinite plane-periodic strip grating of period L, strip
width D and shift parameter w. Here, the grating operator D, is reduced to
e ad

-6—y(H +H*) =0 (201)
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Fig. 20. Scattering geometry for a circular open screen over a periodic grating of flat strips. Plane
wave is incident.

at [¢ —w —nL| < D,y =0 for all n = 0,1,..., and the condition like (189) requested in
the vicinity of any strip edge. e

Besides, such a zero-thickness perfectly conducting grating can be shown to support
no guided natural modes along the z-axis, so the radiation condition (190) is reduced to
Sommerfeld one.

As it has been demonstrated before, to obtain the basic equations we need first to
find the Green’s function of the grating G(7,7’). However, the latter needs a preceding
‘treatment on the plane-wave scattering from the same grating. Here we have a screen above:
the grating, so we consider a plane H-wave incidence from Dy, thatis ,

~ { ehe=itle gy oy b b
0

A = o (202)

) yc<_b e | _.\-.,w;-"—-

r-=
7

Besides, it is well known that for a plane strip grating there are valid the relations
bo=1—an, by=—ay,  (4=%1,£2,05) dockic (203)

which enable us to exclude the coefficients b, from the further tréatment. i
The problem of obtaining the values of a, is reducible to the dual series equations
solvable by means of the RIP procedure (see [6-9,27,28]). To save the space we e\plcut the

solution as it is given in [49]. Wfoieh
Fac ot BadA it o

If we introduce 5 L _ ]
. s L _ kw i
) = — = — e }. 7
L0 T Leinerbs (204)
and extract the integer number s from the quantity nh/k as .'ch/k -'ﬂs + 7, where s =
0,%1,..., =1/2 < v < 1/2, then after denoting «oiddadd babiver: =
af geilaitlan v
m=s-+gq, A = gy =ty (205)
we arrive at the matrix equations yréan i
({-H)a=D =141 o padniio (206)
where a = {am :?:—m’ - Hf]mﬂ!;m n_—oo:D {Dm m==00! avrisdzib sl 48 b
s dlids bas ¢
Hpp = 7'ann('T) + §om78m(7) (2[}7)
Dy, = _i""Gqu(‘T) (268)
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and the following definitions are adopted

ro = i(g* — y?)!/?, Tm = |m+ 5|+ iom

Om = Kgm =k [¢° — (m + 7)7] i

B = gl'{n-m)t.ﬁo{ (m+ 7).:1 V,::%(COS é), m#0
Wi (cos#,) m=0

(m+7)"'Pn(cosd), m#0

Q+(cos 5), m=0

om . SIDTY (-—1)”!/;‘_'1'1(cos f)
Wi s =ty
(p)

P+
sin w7y —1)P P,(cos @
Q‘Y - = Z( ) _:( )
i

Sm = e™iM¥o {

and P,(-) are for the Legendre polynomials.

The solution of (206) is shown to exist in Iy, is unique and may be approximated
by solving a finite matrix equation of a large enough order. The coefficients behaviour
as(h) ~ O(|s|7¥?) as |s|] — co guarantees the local energy limitation condition to be
satisfied.

Let us return to the initial combined problem, assuming that the whole screen-grating
structure is excited by the plane H-polarized wave incident at an angle 8: 0 < § < T, le.

. Eik(:cucosﬁ—ycsinﬁ) Ye =y —b>—b

H" () = ' 209
El= e e (200)

Then according to the preceding analysis, the resulting matrix-operator equation takes the

form as

(I-A-AYhu=cC (210)
where the operator A = [[Amnll ne-oo is again given by (52), while for the operator
Al = ||ALL 1% o~ — oo the function of (111) in (115) should be replaced by

X jptn glgbtiny ; 5
o == / - %;%myﬂJHth (211)
3

As the incident field is that of a plane wave, the free term coefficients are

Cr = in(ka)® Y Jh(ka) (" + Q) Tomn (8, 00) (212)
(n)
where | { i
Qg — " Zaa(k cos ﬁ)el(g.—ks:n,ﬁ)b+m¢,(ﬂ} (213)
(2)

When calculating the functions QJ{D‘:,) one can note that the leading contribution in the sum
is from the terms for which |h/k + s/k| < 1 as the rest terms give an exponentially small
contribution at sufficiently large b. Besides, when integrating over %, the main contribution
is from the interval |h| <k, and no residues from the poles appear. For these values of h

(
\
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Fig. 21. Frequency dependence of normalized total scattering cross-sections of semicircular
screen above strip grating, perfect reflector, and in free space.

Fig. 22. Far-field scattering patterns calculated at the points marked in Fig. 21.

the energy conservation equation is valid. Hence

S sl (W + b (W) = 1= fao (W) = foo(h) (214)

si|hfk+s/&|<1
For a plane strip grating this is reduced to

B o104 07 g, ]as (B = 1= |ao(h)]* — |1 — ao(h)]? (215)
si|hfk+s/x]<1
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Therefore, if the grating parameters are chosen to provide a good penetration through
the interface, i.e. suplag(h)| < A << 1, then for the harmonics involved into (215)

las(h)] < 1A% = (1= A) = 0(4) (216)

It follows from this fact that the whole operator A is small compared to A, in the corre-
sponding norm, and the interaction may be neglected.

In the opposite situation assume that the grating operates as a good reflector, and
sup(l — |ao(h)]) < A << 1. Then extracting the 0-th term from the sum in (211), we

conclude that QI(J?‘) = (1) »(2kb) 4 O(A). It means that the resonator’s behaviour is similar
to that of a two-mirror one where the role of the second screen is played by the image of
the first (real) screen M, so the separation 2b appears between the centres of curvature.
Generally, a computation of the functions Q{%) is rather a time-consuming procedure even
for a simple grating. However, if the period is small compared to wavelength, i.e. £ <1, a

simple Lamb’s rule is valid for any value of the stripwidth D :0 < D/L < 1, that is

ﬂ-n(h)z‘;%, a;(h) = 0(x?) LT (217)

where 5 |
@ =—2Incos %E- ' (218)

This approximation reduced the calculations to numerical integration of elementary func-
tions, and it was used in further investigations. The values of interest were the far-field
scattering pattern in the presence of grating and the total scattering cross-section. After
implementation of the saddle-point asymptotic evaluation technique we find that

n . 2ikbsing
&% (p) = an(-—i)".},'l(ka) [e"“*’ =+ ag(Ekcos c,o)e_‘”,"”{e ; }] (219)
(n)

~ '

7 == f (w4 + 0 F) dp -5 (220)
spprCl fand €y L v st |

Figs.21 and 22 demonstrate the effect of a short-periodic strip grating on the scattering
by a semicircular screen operating as a two-mirror open resonator (solid lines). For com-
parison, the dashed and dash-dotted curves correspond to the analogous characteristics of
the same screen in {ree space and over a perfectly conducting plane, respectively. Regular
resonances are observable at the frequencies producing phase-matching of the fields radiated
from the screen and its image (two terms in (219)). Besides, some of the resonances are
enhanced additionally provided that a natural oscillation mode of the screen itself is excited.
One can see that by increasing the reflectivity of the interface the resonances are shifted to
lower frequencies and become more intensive. As in the whole frequency range of the plots
in Fig.21 the quantity & < 0.1, the strip grating here is rather a poor reflector for an f{-
polarized wave. Therefore the far-field scattering patterns resemble those of the free-space
diffraction (see Iig.22).

Similar approximate analysis based on the formulas analogous to (217) can be carried
out for other shortperiodic gratings. Paper [52] contains the results on H-scattering from
a screen in presence of a grating of rectangular grooves or of slitted circular cylinders. The
latter case is remarkable for the grating operation as a highly frequency-selective surface,
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with a total reflection at the frequency of the Helmholtz mode of the elements but with an
almost total transmission off this frequency.

6. CONCLUSION

In this paper the combined approach based on the Green’s function and the Riemann-
Hilbert Problem techniques has been discussed. It is used here for analyzing 2 — D wave
scattering from combined structures such as circular screens in presence of plane regular or
regularly-periodic boundaries. If the plane wave diffraction from and penetration through
these boundaries can be solved rigorously (as for dielectric slabs) or treated in a numerically
accurate manner (as for various diffraction gratings), then the corresponding Green’s func-
tions are available in Fourier transform domain analytically or numerically. This fact gives
the opportunity to exploit a modified procedure of the RHP-based partial inversion in wave
scattering by a circular screen in such an inhomogeneous environment.

The discussed approach is remarkable for the full mathematical grounding, that is the
solution is proved to exist, be unique and can be delivered numerically but with any desired
degree of approximation.

Implementations of the approach are considered here only for H-polarized scattering.
Of course, E-polarized case is of much interest as well. Besides, the screen-grating scattering
analysis remains to be deepened by using the full-wave numerical algorithms taking account
of grating properly. This can clarify many questions of practical interest, e.g. a behaviour
of nonspecularly reflecting gratings placed in open resonators. ’

Moreover, the ideas discussed in this paper are applicable to other geometries of com-
bined nature, e.g. like a curved screen and a semiplane or finite flat strip. One of the major
shortcomings of the RHP method is known as inability to solve impedance-screen scatter-
ing problems. However, the impedance boundary conditions can be introduced on the flat
strip and corresponding Green’s function can be constructed by the modified Wiener-Hopf
technique [53,54] or the orthogonal-polynomials method [55].
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