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RCS analysis of canonical,

two-dimensional material-loaded cavities
with rectangular and circular cross sections

Kazuya KOBAYASHI *
Alexander 1. NOSICH **

Abstract

A rigorous radar cross section (Rcs) analysis of
canonical, two-dimensional material-loaded cavities
with rectangular and circular cross sections is carried
out using the Wiener-Hopf technique and the Riemann-
Hilbert problem technique, respectively. Both E and
H polarizations are treated. It is shown via numerical
examples that the absorbing layer loading inside the
cavities gives rise to the significant rRCS reduction. The
results can be used as a reference solution for validating
more general-purpose computer codes based on appro-
ximate methods.

Key words : Cross section, Radar target, Bidimensional model,

Canonical form, Rectangular configuration, Circular configuration,
Wave diffraction, Wiener Hopf method, Cavity.

ANALYSE EN SER DE CAVITES CANONIQUES
A DEUX DIMENSIONS
CHARGEES EN MATERIAUX
ET COMPORTANT DES SECTIONS
RECTANGULAIRES OU CIRCULAIRES

Résumé

L’analyse rigoureuse de la détermination de la sur-
face équivalente radar de cavités canoniques 2-D char-
gées d’'un matériau, ayant une section rectangulaire
ou circulaire par les méthodes de Wiener-Hopf et de
Riemann-Hilbert, les polarisations E et H sont traitées.
A partir d exemples numériques, on montre que la
couche de matériau chargeant les cavités entraine une
réduction significative de la SEr. Ces résultats peuvent

étre utilisés comme références de calcul pour valider des
programmes basés sur des méthodes approchées.

Mots clés : Section efficace, Cible radar, Modele bidimension-
nel, Forme canonique, Configuration rectangulaire, Configuration cir-
culaire, Diffraction onde, Méthode Wiener Hopf, Cavité.
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I. INTRODUCTION

Analysis of the scattering from open cavities is an
important subject in target identification problems since
these scatterers contribute significantly to the radar cross
section (Rcs) due to the interior irradiation. A number of
investigations on the scattering from two-dimensional
(2-D) and three-dimensional (3-D) cavities have been
carried out thus far using the high-frequency (uF) asymp-
totic techniques and the moment method (Mm) [1-7].
However, it appears that the solutions deduced via these
methods are not uniformly valid for arbitrary cavity
dimensions.

The Wiener-Hopf (wH) technique [8] and the
Riemann-Hilbert problem (rup) technique [9, 10] are
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powerful, rigorous approaches for solving diffraction
problems associated with canonical geometries. There
are some recent contributions on the scattering by cavi-
ties based on the wH and rRHP techniques {11-14], in
which accurate and reliable results are obtained over
broad frequency range. In the present paper, we shall
consider 2D rectangular and circular loaded cavities
as related to the geometries in [13, 14], and analyze
the plane wave diffraction for both £ and H polari-
zations using the wH and RHP techniques, respectively.
It is shown via illustrative numerical examples on the
monostatic and bistatic rRcs that the interior irradiation
is significantly reduced for loaded cavities. In the fol-
lowing, the analysis procedure is presented only for the
E-polarized case, but numerical results are given for
both polarizations.

The time dependence e~ “* is suppressed throughout
this paper.

II. A CAVITY
WITH RECTANGULAR CROSS SECTION :
THE WIENER-HOPF APPROACH

We consider a 2-D loaded cavity illuminated by an
E-polarized plane wave, as shown in Figure 1, where
the cavity plates are infinitely thin, perfectly conducting,
and the material layer is characterized by the relative
permittivity and permeability €, 11,-. Let the total electric
field be :

(1) Ei(l"y) =Ei(x,y)+Ez(x,y),

where E%(z,y) is the incident field defined by :
(2)  Eilzy) = e KEeosvatusinon o< gy <

y E!

b /@ *

Sr o
—alc p (2 d

_b‘

Fic. 1. — Geometry of the rectangular cavity.

Géométrie de la cavité rectangulaire.

with k(= w,/lig€g) being the free-space wavenumber.
For convenience of analysis, we introduce a slight loss
into the medium as in k = ky + kg with 0 < ky < ky,
and take the limit k2 — +0 at the end of analysis.

Let us define the Fourier transform of the scattered
field E,(x,y) by :
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(3)

P(s,y) = e dz, s=o0+ir,

1 o
— E, (x
vV 27 /—oo ( Y

being regular in |7| < ko. Taking the Fourier trans-
form of the Helmholtz equation and solving the resultant
equations, we may derive the scattered field representa-
tion in the complex domain. The field for y z tbis
given by :
@) ®(s,y) = (1/2){e**[U_(s) £ V_(s)]+

&2 [Uy () £ Vi (5)]} e FHOWF),

where x(s) = v/ — k? with Re x(s) > 0, and
(5) Uxi(s) =U4i(s,b)+ Ty(s,—b),

Vi(s) = W (s,5) = B (s, ~D),

A e—ikysin ®o
(6) Ti(s,y) =Pu(s,y) F 7>

s — kcos g
e:Fikacoscpo
A =
SN
7) Bi(s els(@Fa) (g
1) @slon) =t /

Applying boundary conditions at the cavity surface
and the material interface, the problem is formulated in
terms of the Wiener-Hopf equations satisfied by UL (s)
and V,.(s). These equations can be solved exactly in a
formal sense leading to the following exact solution :

Au
@9 Ualo) = Male)| 7 A
— 0

Tiy(s) + ﬁms)] ,

At
V(s — kcos ¢qg)

T2y (s) £ x/Bng)] ,

(8b) Vi(s) = Ni(s) l::b

where My (s) and N4 (s) are the wh split functions [12,
13], and
9) A 2v/bA; 5 cos(kbsin <p0)
127 T My (kcos po)
40 2iv/bA; o sin(kbsin @)
1,2 Ni(kcosgg)

/:Hoo S NrE ) a,
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- +

U X2n—3 fnpnan

11) Fi(s) = b(s + ikan_3)

(11) Fi(s) TLZ::Q{ 1 }b(siiﬂ2n~3)
- +

" . X2n—2 J"—(bl.v_"__s

Fie - Y (e | e

n=2

e—2kn(a—d) [J;Le—wn(d—c) -0 ]

"
(12) Xn = 1 — o/ gpe2Kn(d=0) ’

Urkin — Ky
13) op=————
( ) " Brkn + Kn
’ HrKp — TnKn 1- e—2nn(c+a)
g, = Ty = ————
Urkn +TaKn " 1+ e 26n(cta)
(14)

fa=[(n—3/2)7]*/bikgn-3, gn=[(n—1)7]?/bikan_2,
(15) pn = M (ik2n-3)/Vb, Gn = Ny (ikzn—2)/Vb,
(16) uE = Us(Fikgn 3)/b, v = Vi(Firam—_2)/b,

(A7) Ky =/ (n7/2b)2 — k2,
Kn=+/(nm/2b)2 — k2, k' = \/urerk.

We may apply the method established in [12] to
derive approximate formulas for the infinite series
F%(s), Fi(s) and the branch-cut integrals J{',(s),
JV2(s) defined by (10) and (11). In particular, the
asymptotic expansions of J}',(s) for large |k|a are found
to be

2451 cos(kbsin pg)
(18) Ji'a(s)~ \[flpl{[ i+ kb(1 % cos pg) }X

20A
&(£s) + &b2,1 cos(kbsin o )n(+s, £k cos cpo)},

and the approximate expressions of F¥(s) are derived
as :
N

+
X2n—3 fnpnun
19) F o~ __Jnintm
( £(s) Z{ } (s T ik ) |

12 i {X2n—3 } f(bran—3) "2 ,
K oy vt 1 b(s + i:‘iQn_g)

for large N with ¢; = 2(d # a); = 3/2+v(d = a)
and ¢; = 13/6, v being defined in [13] where CY', are
unknown constants, and

(20) fr =kb, p1 = My (k)/Vb, uf = Uy (k)/b,

ei(2ha—7/4)

(21) &(s) = TJ—M—HB/Q’ —2i(s + k)al,
S1.80) = (51) —&(s2)
n(s1,52) (51— s2)a
3/6

In (21), Ty (-, ) is the generalized gamma function defi-
ned in [15].

Using (18) and (19), we can derive approximate
expressions of (8a), which are valid for cavity depth
2a greater than about the wavelength. The unknowns
u,f forn=1, 2, 3,---, N and C}', are determined by
solving an appropriate matrix equation numerically [12].
We have verified that the choice N > 2kb/m provides
sufficiently accurate results. Approximate expressions of
(8b) are derived following the same procedure as above.
The scattered field in real space for |y| > b is evaluated
asymptotically by taking the inverse Fourier transform
of (4) and applying the saddle point method.

III. A CAVITY

WITH CIRCULAR CROSS SECTION :
THE RIEMANN-HILBERT

PROBLEM APPROACH

We now consider a 2-D loaded cavity illuminated by
an E-polarized plane wave, as shown in Figure 2, where
the cavity wall is infinitely thin and perfectly conducting
while the ring-shaped loading has the relative material
constants €,, . Let the total electric field be defined
by the same expression as in the previous section (see
(1) and (2)) except that we set £ = 0 for r < a. The
scattered field E, can be expanded as

(22) E.(r,p) = Z fa(r) ein‘pa

n=—0o0

in cylindrical coordinates using the Bessel and Hankel
functions, where

(23)
A HP (kr), 7> a,
fulr) = B, J,(kr) + C H(l)(kr), d<r<a,
D Jn(k'r) + B H (K'r), e < r < d,
Jn(kr), T < c.

FiG. 2. — Geometry of the circular cavity.

Géométrie de la cavité circulaire.
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Applying the boundary conditions for E! and
OE/dr atr = c, d to eliminate By, Cy,, Dy, E,, F, in
(23) and then taking into account the boundary condition
at r = g, we arrive at the dual series equations (DSE) :

(24a) Y. e =0, 6<|o|<m,
n=-—0o00
°° (1) —1,in
& Hey ' (k el™¥

o 3 el G

ne—oo &ndn(ka) + (uHp ' (ka)

O (_ij\reln(v—vo)
i)"e
=) (—)r~ || <8,
n=-—00 Hn (ka)

where
(25)

Zn=AnHY (ka) + (—1)" Jn (ka)e ™0 5 = /e /i,

(26) & = Y HY (kd) — 6, H (kd),
(o = 5an(kd) ~ %J;L(kd),

(27) Yn = Oéan(k/d) + /BnHv(zl)(k/d)a
bn = nanJ (K'd) + B, HY' (K d)],

(282) oy = nJn(ke)HY (K'c) — HO (K'¢)J!, (ke),
@28b)  Bn = Ju(K'e)J (ke) — ndn(ke) . (Kc).

In the above, the prime on H,(Ll)(-) and J,(-) implies
differentiation with respect to the argument. Introducing
the function of a complex variable z = |z|el®8# as
X(2) = 32 | na,2%8°(1=12D" the psk can be formula-
ted in terms of the Riemann-Hilbert functional equation
satisfied by the limiting values of X (z) on the unit cir-
cle |z| = 1. This equation can be solved exactly based
on the theory of Cauchy’s integrals [9] resulting in the
matrix equation of the Fredholm second kind :

(29)
[o¢]
Tm= Y. Kmpn@n+Lm, m=0, £1, £2,.-,
n=—oo
where

(30) Kmn = PmnTmna

o0
L= (=) ™ HO k)] + 3 lnn T,

n=—oo

(1)
O1a) Py = [0V )
JIm(ka)Hp' (ka)
i ndn(ka)|Jm(ka) HY (ka)] !
T Endn(ka) + CuH (ka)
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Giby 1. = D Tn(kaeinen
T (ka) HYY (ka)
il‘"éne*ineo [Jm(k;a)Hv(r})(ka)]_l
tlnn(ka) + GHD (ka)]

Qmnlcosf), m #0,
(32)  Tmn =1 Qno(cosh), m =0, n#0,
—In[(14+cos)/2], m=n=0,

and Qpn(¢) in (32) is given in [14] in terms of the
Legendre polynomials.

We can show by taking into account the asymptotic
behavior of Kp,, for |m|, |n|] — oo, together with
the Fredholm theorems, that the unique solution of (29)
exists and is approximated by the solution of a truncated
matrix equation with any desired accuracy. Practically,
after separating the matrix into even and odd parts,
|k’la + 10 equations are sufficient to obtain the far
field quantities within the 0.1% accuracy. Unlike the
conventional MM solutions, no numerical integrations are
required for computing the matrix elements and hence,
the present solution is efficient in a computational sense.

IV. NUMERICAL RESULTS
AND DISCUSSION

We shall now present numerical examples on the
rRcs to discuss the far field scattering characteristics
of rectangular and circular cavities for both £ and
H polarizations. In order to have a better ground for
comparison, we take a square-shape cavity (¢ = b in
Figure 1) and a three-quarter circular cavity ( = 45°
in Figure 2) with the same material constants &, =
2.5+4+11.25, p, = 1.6410.8. For rectangular cavities, the
material layer is located either on the aperture (d = a)
or on the endplate (¢ = —a), whereas the loading for
circular cavities is such that the material layer is lined
along the interior cavity surface and covers the aperture
(d = a). The material layer thickness t(= d — ¢) has
been chosen as 0.2 a for rectangular cavities and 0.1 a
for circular cavities. The results for empty cavities have
also been added for investigating the effect of material
loading.

Figures 3 and 4 show the frequency dependences of
the monostatic rcs for rectangular and circular cavities,
respectively, where the incidence angle is o = 10° for
both geometries. In the figures, the results of closed rec-
tangular and circular cylinders are also included for com-
parison. It is seen from Figures 3 and 4 that the empty
circular cavity exhibits stronger resonances than the rec-
tangular one. This is perhaps due to the whispering-
gallery behavior of higher order natural modes in the
circular cavity, which does not appear in the rectangular
case. We also observe that the absorbing layer loading
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FI1G. 3. — Monostatic RCS (dB) versus normalized frequency kb
of a rectangular cavity with ¢g = 10°,a/b=1.0,/a=02 (t=d - c).
~———:closed;----:empty;—:d=a;—-—-— rc=-a.
(a) E polarization. (b) H polarization.
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RCS monostatique (dB) rapportée a la fréquence normalisée kb
pour une cavité rectangulaire avec
@y =10°%alb=10,tla=02(t=d-c).
————fermé;----:vide;,—~—'d=a;--—-~ lc=—a.
(a) Polarisation E. (b) Polarisation H.
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FiG. 4. — Monostatic RcS (dB) versus normalized frequency ka
of a circular cavity with @y = 10°,0 =45°, t/a=0.1 (t=d - ¢).
————:closed;----:empty; —:d=a.

(a) E polarization. (b) H polarization.

RCS monostatique (dB) rapportée a la fréquence normalisée ka
pour une cavité circulaire avec
@y =10°,8=45°tla=0.1(t=d-c).
————fermé ;- ---:vide,—:d=a.
(a) Polarisation E. (b) Polarisation H.

leads to the reduction of the average rcs level for both
geometries, and suppresses the resonances at higher fre-
quencies for circular cavities. In Figures 5 and 6, the
monostatic Rcs is presented as a function of incidence
angle for rectangular and circular cavities, respectively.
To enable comparison between the two different geome-
tries, normalized dimensions of the cavities are taken as
ka = kb = 15.7. It is observed by comparing the results
for empty and loaded cavities that, when the cavity aper-
ture is in the illuminated region against the incident field,
the rcs is reduced for loaded cavities. This reduction can
be seen especially over 0° < o < 30° and is signifi-
cant in the H polarization. Shown in Figures 7 and 8 are
the bistatic rRcs results as a function of observation angle
for rectangular and circular cavities, respectively, where
the incidence angle is fixed as ¢y = 10° and the cavity
dimensions are the same as in Figures 5 and 6. From the
results presented in the figures, we see the shadow lobes
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FiG. 5. — Monostatic RCs (dB) versus incidence angle ¢,
of a rectangular cavity with kb =157, a/b=1.0,t/a=02 (t=d - ¢).
----lempty; —:d=a;—---— c=-a.
(a) E polarization. (b) H polarization.

RCS monostatique (dB) rapportée a un angle d’incidence @,
pour une cavité rectangulaire avec
kb=157,alb=10,tla=02(t=d~-c).
----cvide,—:d=a;—-—-— re=-—a.

{a) Polarisation E. (b) Polarisation H.
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FiG. 6. — Monostatic RCs (dB) versus incidence angle ¢
of a circular cavity with ka =15.7,0=45°t/a=0.1 (¢ =d ~¢).
----iempty;——:d=a.

(a) E polarization. (b) H polarization.

RCS monostatique (dB) rapportée & un angle d’incidence @,
pour une cavité circulaire avec
ka=15.7,0=45°ta=01(t=d-c).
----cvide ;——:d =a.

(a) Polarisation E. (b) Polarisation H.

along the forward scattering direction ¢ = —170°, as
expected. The Rcs reduction is again observed for loa-
ded cavities over the region where the cavity aperture is
visible from the observation point, and it is noticeable
for || < 60° and in the H-polarized case.
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(a) E polarization. (b) H polarization.

Rcs bistatique (dB) rapportée a un angle d’ observation ¢
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(a) Polarisation E. (b) Polarisation H.
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